Monday

English Language Arts: ELAGSE5RL2
Print and begin **Finding Theme of a Story or Drama**

Math: MGSE5.MD.1
Print and complete **Introduction: Convert Measurement Units**

Physical Education: PE5.2.a
Locomotor Movement Assessment: Spend 10 minutes practicing the locomotion patterns of hopping, galloping, running, sliding, skipping, and jumping. Spend 10 min. having someone assess your locomotor movements with the **rubric**. What movements do you need to improve on? Spend an extra 3-5 min practicing the movement that is the most challenging to you.

Tuesday

English Language Arts: ELAGSE5RL2
Complete **Finding Theme of a Story or Drama** from Monday

Math: MGSE5.MD.1
Print and complete **Convert Measurement Units Practice**

Art: VA5.CR.1
Select one from the following list:

<table>
<thead>
<tr>
<th>Superhero Design</th>
<th>Create a superhero and design an outfit for them. Color in with crayons, markers, oil pastels, colored pencils, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Texture</td>
<td>Trace your hand with a pencil or pen and fill it in with at least 6 different patterns and or textures.</td>
</tr>
<tr>
<td>Color Wheel</td>
<td>Create a color wheel using scraps of paper. Tape or glue the paper to a separate sheet of paper. Label the colors and themes.</td>
</tr>
<tr>
<td>Texture Rubbing</td>
<td>Use a crayon or pencil to create 4 different texture rubbings of textures you find in your house. Place your paper on top of the texture and rub with the side of the crayon or pencil</td>
</tr>
<tr>
<td>Favorite Food Self Portrait</td>
<td>Draw a self-portrait, of you wearing a hat made out of your favorite food. If possible, add color.</td>
</tr>
<tr>
<td>Self Portrait</td>
<td>Draw a self-portrait, of you that emphasizes one or more of your unique qualities.</td>
</tr>
<tr>
<td>Who’s Got Mail</td>
<td>Create a postcard that brings art and the state of Georgia together. If possible, send the postcard to someone through the mail.</td>
</tr>
<tr>
<td>Landscape</td>
<td>Create a landscape focusing on the weather. Include a foreground, middle ground and background. Add something that would not be expected in the season you are representing.</td>
</tr>
</tbody>
</table>
Wednesday

English Language Arts: ELAGSE5RL2
Print and complete *Finding Theme of a Poem*

Math: MGSE5.MD.1
Print and complete *Introduction: Solve Word Problems Involving Conversions*

Physical Education: PE5.2.a and PE5.3.f
One Minute Fitness Challenge: Complete the attached one-minute fitness challenge card. See if you can complete each challenge, document how many of each exercise you did or how long each challenge took.

Thursday

English Language Arts: ELAGSE5RL5
Print and begin *Understanding Literary Structure*

Math: MGSE5.MD.1
Print and complete *Solve Word Problems Involving Conversions Practice*

Music: ESGMS.RE.1
Review *Percussion Family Information Sheet*
Print and complete *Percussion Worksheet 1*
Print and complete *Percussion Worksheet 2*

Friday

English Language Arts: ELAGSE5RL5
Complete *Understanding Literary Structure* from Thursday

Math: MGSE5.MD.1
Print and complete *Converting Units Vocabulary Match*
Print and complete *Measurement Match*

Physical Education: PE5.2.a and PE5.3.f
Alphabet Fitness: Using the *Alphabet Fitness* sheet, create and perform a 20 min. fitness circuit using your name, to make the workout longer try doing your first and last name, or even adding your middle name.
Example: M-U-S-C-L-E
M - 5 Burpees
U - 15 Squats
S - 15 Mountain Climbers
C - 10 Squats
L - 10 Walking Lunges
E - 20 Mountain Climbers

Fulton County Schools greatly appreciates the partnership with Curriculum Associates and the permission to provide TeleSchool English Language Arts and Math lessons to students in Grades 3-5.
Lesson 7
Finding the Theme of a Story or Drama

Learning Target
Understanding characters in stories and dramas, including how they respond to challenges, helps you understand the themes of such texts.

Read
In a fictional text, a **theme** is a lesson about life that an author wants readers to understand. For example, a fictional text might present the lesson that loyalty to friends is important. Or, it might develop the idea that living a full life sometimes means taking risks. Themes are always developed by a text’s **details**.

One way to determine a theme is to look at how **characters** respond to **challenges**. A challenge is a problem a character must face.

In the cartoon below, what challenge does the girl face? How does she respond to it? What does that tell you about the theme?

Monday afternoon, 3 P.M.

Did you make the team?

No, but with more practice, I know I’ll make it next year!

Monday evening, 7 P.M.

Soccer Tryouts

Did you make the team?

No, but with more practice, I know I’ll make it next year!
Think What have you learned about identifying the theme of a fictional text? Use the organizer below to help you identify the characters, setting, and character experiences that develop the theme.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Talk Share your organizer with a partner.
- Did you write down the same character experiences?
- How did the main character react to the challenge?
- Did you arrive at roughly the same theme?

Academic Talk Use these words to talk about the text.
- theme
- challenge
- details
- characters
Scene 1: The Miser’s garden

[The Miser digs up the gold he’s buried and then counts it piece by piece.]

Miser [rubbing his hands with delight]: Yes, every last coin is there—the exact sum I’ve had for years! Now I must bury my treasure again to hide it.

Thief [watching from behind a tree]: Every day this man digs something up and then buries it again. I shall see what it is he digs up and buries! [waits for the Miser to leave, then digs up and steals the gold]

Scene 2: The next morning

Miser [digging where his gold was]: My gold! My gold! I’ve been robbed! [A Stranger hears the Miser’s cries and comes to see what is wrong.]

Stranger: Your gold? There in that hole? Why did you put it there? Why didn’t you keep it in the house where you could easily get at it when you had things to buy?

Miser: Buy? Why, I never touched the gold except to count it! I couldn’t think of spending it!

Stranger [throws a large stone into the hole]: If that is the case, then cover up that stone.

Miser [scoffing]: You are a fool! That is not gold. It is a mere stone.

Stranger: It may be a mere stone, but it is worth just as much to you as the treasure you lost.

[The Stranger walks off, leaving the Miser to consider his words.]
What is the theme of “The Miser”?

Think

1. Complete this organizer by identifying the details of the drama.

- **Characters**
- **Setting**
- **Character Experiences**
- **Theme**

Talk

2. Discuss how you figured out the theme of the drama. If you identify more details that you’d like to add to your organizer, do so now.

Write

3. **Short Response** Describe the theme of the drama. Explain which details develop the theme. Use details from the organizer in your response. Use the space provided on page 126 to write your answer.

HINT In your answer, identify how the characters behave or interact with each other.
The Wise Man

a Chinese folktale

1. There once was an elderly farmer who lived with his son. One day the old man discovered that his only horse had run off. His friends helped him search for the animal, but to no avail. The old man’s friends offered their condolences. “We are so sorry about this unfortunate incident,” they said.

2. The old man laughed and replied, “What makes you think this is not a blessing? All will be shown for its true worth in time.” The old man’s friends were stunned by his reaction.

3. Some months later, the old man’s horse returned, bringing with it a stallion of great worth. His friends came to celebrate. But the old man shook his head and said to them, “What makes you think this is a good thing? All will be shown for its true worth in time.” The old man’s friends were surprised again.

4. A week later, the old man’s son took the stallion for a ride and suffered a fall, breaking his leg in several places. Again, the old man’s friends came to offer their sympathy, but the old man greeted them calmly and replied, “What makes you think this is not a blessing? All will be shown for its true worth in time.”

5. A short while later, the country was involved in a terrible war. A group of soldiers came to the old man’s house to recruit his son. But when they saw that he had a broken leg, they left him behind. The old man’s neighbors gathered to congratulate him, declaring with amazement, “What wisdom you have, for you can foresee both good and bad incidents for what they truly are.”

Close Reader Habits

How does the old man respond to the challenges he faces? Reread the folktale. **Underline** the sentences that show his responses to challenges.
Think Use what you learned from reading the folktale to respond to the following questions.

1. This question has two parts. Answer Part A. Then answer Part B.

Part A
How do the actions of the old man’s friends contribute to the theme of the story?

A. They want to celebrate with the old man.
B. They jump to conclusions about what events are blessings and misfortunes.
C. They are glad because the old man’s son does not have to go to war.
D. They are confused by the old man’s happiness.

Part B
Which detail from the folktale best supports the answer to Part A?

A. “The old man’s friends offered their condolences. ‘We are so sorry about this unfortunate incident,’ they said.”
B. “The old man’s friends were stunned by his reaction.”
C. “Some months later, the old man’s horse returned, bringing with it a stallion of great worth.”
D. “A group of soldiers came to the old man’s house to recruit his son.”

Talk

2. What is the theme of the passage? Use details from the passage to support your answer. Use the organizer on page 127 to identify the characters, setting, theme, and evidence for the theme.

Write

3. Short Response Use the information in your organizer to determine the theme of the folktale. Use details from the passage to support your response. Use the space provided on page 127 to write your answer.

HINT Be sure to say how the old man responds to events and interacts with his friends.
Write Use the space below to write your answer to the question on page 123.

THE MISER

3 Short Response Describe the theme of the drama. Explain which details develop the theme. Use the details from the organizer in your response.

HINT In your answer, identify how the characters behave or interact with each other.

Check Your Writing

☐ Did you read the prompt carefully?
☐ Did you put the prompt in your own words?
☐ Did you use the best evidence from the text to support your ideas?
☐ Are your ideas clearly organized?
☐ Did you write in clear and complete sentences?
☐ Did you check your spelling and punctuation?
The Wise Man

2. Use the graphic organizer below to organize your ideas and evidence.

- **Characters**
- **Setting**

Character Experiences

Theme

3. **Write** Use the space below to write your answer to the question on page 125.

Short Response Use the information in your organizer to determine the theme of the folktale. Use details from the passage to support your response.

- Wise Man
- The Characters
- Character Experiences
- Theme

HINT Be sure to say how the old man responds to events and interacts with his friends.
Atri is the name of a little town in Italy. A long time ago, the King of Atri had a large bell hung up in a tower in the marketplace. A rope that reached almost to the ground was fastened to the bell so that even the smallest child could ring the bell by pulling upon this rope. All the men, women, and children of Atri came down to the marketplace to look at the bell. It was a very pretty bell, and it was polished until it looked as bright and yellow as the sun.

“My people,” said the king, “do you see this beautiful bell? It is the bell of justice. If any of you is wronged at any time, you may come and ring the bell. Then the judges shall come together at once, hear your case, and give you justice. Rich and poor, old and young, all alike may come, but you must not pull the rope unless you know you have been wronged.”

Many years passed, and many times did the bell ring out to call the judges together. Many wrongs were righted and many ill-doers punished. At last the rope, worn and broken, became so short that only a tall man could reach it. “This will never do,” said the judges one day. “What if a child should be wronged? He or she could not reach the bell to ring it.” They gave orders that a new rope should be put on the bell, but there was not a rope to be found in all of Atri. They would have to send across the mountains for one, and it would be many days before it could be brought.

“Let me fix it,” said a man who stood by. He ran to his garden and soon came back with a long grapevine. He climbed up and fastened it to the bell. The slender vine, with its leaves and tendrils still upon it, trailed to the ground. The judges thought it to be a very good rope.
Now, on the hillside above the village, there lived a man who had once been a brave knight. In his youth, he had fought in many a battle. His best friend had been his horse—a strong, noble steed that had borne him safe through danger. But the knight, when he grew older, cared no more to ride into battle and cared no more to do brave deeds. He thought of nothing but gold and became a miser. Day after day, he sat among his bags of money and planned how he might get more, and day after day, his horse stood in his bare stall, half starved and miserable.

“What is the use of that lazy steed?” said the knight to himself one morning. “It costs more to keep him than he is worth. I might sell him, but there is not a man who wants him. I will let him fend for himself.” So the brave old horse was turned out to find what he could on the barren hillside. Weak and sick, he strolled along the dusty roads, glad to find a blade of grass or a thistle.

One hot afternoon, the horse wandered into town. Not a person was there, for the heat had driven them all indoors. It wasn’t long before the poor beast saw the grapevine that hung from the bell, the leaves and tendrils upon it still fresh and green. What a fine dinner they would be for a starving horse! He stretched his neck and took one of the tender morsels in his mouth, but it was hard to break it from the vine. He pulled at it, and the great bell began to ring.

The judges put on their robes and went out through the hot streets to the marketplace, where they saw the old horse nibbling at the vine. “Ha!” cried one. “It is the knight’s steed. He has come to call for justice, for his master, as everybody knows, has treated him shamefully.”
9 Meanwhile a crowd had gathered, eager to learn what caused the
judges were about to try. When they saw the horse, everyone stood
still in wonder. Then all were ready to tell how they had seen him
wandering the hills, uncared for and unfed.

10 The judges ordered the knight to be brought before them. And
when he came, they bade him stand and hear their judgment. “This
horse has served you well,” they said. “He has saved you from many a
peril. He has helped you gain your wealth. Therefore, we order that half
your gold shall be set aside to buy him shelter and food, a green pasture
where he may graze, and a warm stall to comfort him in his old age.”

11 The knight hung his head and grieved to lose his gold, but the
people shouted with joy, and the horse was led away to his new stall and
a dinner such as he had not had in many a day.
Think Use what you learned from reading the folktale to respond to the following questions.

1 This question has two parts. First, answer Part A. Then answer Part B.

Part A
How are the events in paragraphs 1, 2, and 3 important to one of the themes of the story?

A They show that townspeople are concerned about whether children can seek justice.
B They show that judges must be very wise in order to provide justice for everyone.
C They show that the bell’s new rope must come from far away, across the mountains.
D They show that the town’s leaders want everyone to have equal access to justice.

Part B
Which two sentences from the story provide the best support for the answer in Part A?

A “A rope that reached almost to the ground was fastened to the bell so that even the smallest child could ring the bell by pulling upon this rope.”
B “It was a very pretty bell, and it was polished until it looked as bright and yellow as the sun.”
C “If any of you is wronged at any time, you may come and ring the bell.”
D “Many years passed, and many times did the bell ring out to call the judges together.”
E “At last the rope, worn and broken, became so short that only a tall man could reach it.”
F “They would have to send across the mountains for one, and it would be many days before it could be brought.”
This question has two parts. First, answer Part A. Then answer Part B.

Part A
How do the knight’s actions contribute to a theme of the story?

A His decision to appear in front of the judges shows that it is brave to stand up for yourself.

B His treatment of his horse demonstrates that animals should be allowed to roam freely.

C His choices show that wealth should be used to help those who have been loyal friends.

D His actions show that a person can behave poorly but still be respected in the community.

Part B
Which detail from the story best supports the answer to Part A?

A “. . . his master, as everybody knows, has treated him shamefully.”

B “. . . they had seen him wandering the hills, uncared for and unfed.”

C “. . . they bade him stand and hear their judgment.”

D “Therefore, we order that half your gold shall be set aside to buy him shelter and food, . . .”

Read the sentence from the text. Then answer the question.

Day after day, he sat among his bags of money and planned how he might get more, and day after day, his horse stood in his bare stall, half starved and miserable.

What does the use of the word **miserable** suggest?

A The horse is unhappy.

B The horse is greedy.

C The horse is hungry.

D The horse is loyal.
Learning Target

In this lesson, you determined the themes of fictional texts. Explain how the skills you practiced will help you figure out the themes of fictional texts you read in the future.

Write

4 Short Response One theme of “The Bell of Atri” is that you should help those who have helped you. Write a paragraph that explains how the theme of the story is shown through the characters’ actions and their responses to events.

__

__

__

__

__
Use What You Know

You have worked with measurement units in earlier grades. Now you will convert between different units in the same measurement system.

Is the number of cups in 5 gallons greater than or less than the number of gallons?

a. Circle the greater amount in each row:
 1 gallon or 1 cup
 2 gallons or 2 cups
 5 gallons or 5 cups

b. If you pour 5 gallons of water into 1-cup containers, would you need more than or fewer than 5 containers?

c. Is the number of cups in 5 gallons greater than or less than the number of gallons?
You measure for many different reasons. You might measure to find how long or tall something is, how much liquid something holds, or how much something weighs.

You can choose different units when you measure. Think about your height. You could measure your height in inches or feet. Your height does not change if you are measured in inches instead of feet. It is just recorded using different units.

Look at the picture at the right. **1 gallon = 16 cups**

The same amount of liquid could also be measured in quarts. Quarts are smaller than gallons.

1 gallon = 4 quarts

Quarts are larger than cups. **1 quart = 4 cups**

Imagine filling the 1-gallon container using cups or quarts. You would need to fill the quart container 4 times to have enough liquid to fill the gallon container. You would need to fill the cup container 16 times to have enough liquid to fill the gallon container.

Reflect

1. Describe a real-world object that can be measured using two different units. Which unit would you need more of to measure the object?
Read the problem below. Then explore different ways to convert measurement units.

How many meters are in 3.5 kilometers?

Model It You can use a table to help understand the problem.

The table below shows the relationship between meters and kilometers.

<table>
<thead>
<tr>
<th>kilometers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>meters</td>
<td>1,000</td>
<td>2,000</td>
<td>3,000</td>
<td>4,000</td>
<td>5,000</td>
<td>6,000</td>
</tr>
</tbody>
</table>

Solve It Use the information from the table to understand how to solve the problem.

The pattern in the table shows that the number of meters is always 1,000 times the number of kilometers.

<table>
<thead>
<tr>
<th>kilometers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>meters</td>
<td>1,000</td>
<td>2,000</td>
<td>3,000</td>
<td>4,000</td>
<td>5,000</td>
<td>6,000</td>
<td></td>
</tr>
</tbody>
</table>

To find the number of meters in 3.5 kilometers, multiply 3.5 by 1,000.
Connect It Now you will solve the problem from the previous page using unit conversions.

2 Which is the smaller unit, meters or kilometers? __________________________
 How do you know? __

3 What operation do you use to convert from a larger measurement unit to a smaller measurement unit? __________________________

4 3.5 kilometers = _________ meters
 Write your answer in the table on the previous page.

5 Use what you learned about the relationship between meters and kilometers to complete the table below.

<table>
<thead>
<tr>
<th>kilometers</th>
<th>0.8</th>
<th>1</th>
<th>1.85</th>
<th>2</th>
<th>2.03</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>meters</td>
<td>1,000</td>
<td>2,000</td>
<td></td>
<td>3,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 How many meters are in k kilometers? __________________________

7 There are 3 feet in 1 yard. Explain how you decide whether to multiply or divide by 3 if you need to convert yards to feet. __________________________

Try It Use what you just learned about converting measurement units to solve these problems. Show your work on a separate sheet of paper.

8 There are 16 ounces in 1 pound. How many ounces are in 10 1/2 pounds? ________________

9 There are 10 millimeters in 1 centimeter. How many millimeters are in 9.25 centimeters? ________________
Read the problem below. Then explore ways to understand how to convert measurement units.

How many quarts are equivalent to 6 cups?

Model It You can use a table to help understand the problem.

The table below shows the relationship between cups and quarts.

<table>
<thead>
<tr>
<th>quarts</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>cups</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>

Solve It Use the information from the table to understand how to solve the problem.

The pattern in the table shows that there are 4 cups in every quart.

<table>
<thead>
<tr>
<th>quarts</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>cups</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

To find the number of quarts equivalent to 6 cups, divide by 4.
Connect It Now you will solve the problem from the previous page using unit conversions.

10. Which is a smaller unit, quarts or cups? ____________
 How do you know? ______________________________________

11. What operation do you use to convert from a smaller measurement unit to a larger measurement unit? ________________

12. 6 cups = _______________ quarts
 Write your answer in the table on the previous page. Explain your reasoning.

13. Use what you learned about the relationship between cups and quarts to complete the table below.

<table>
<thead>
<tr>
<th>quarts</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>cups</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

14. One gallon is equivalent to 8 pints. Describe how to convert from pints to gallons. Explain your reasoning.

Try It Use what you just learned about converting measurement units to solve these problems. Show your work on a separate sheet of paper.

15. There are 1,000 milliliters in 1 liter. How many liters are in 100 milliliters? ____________

16. One yard is equivalent to 3 feet. How many yards are equivalent to 25 feet? ____________
Study the example below. Then solve problems 17–19.

Example

There are 12 inches in 1 foot. Write 75 inches in feet and inches.

Look at how you could explain your work using conversions.

Feet are larger than inches, so the number of feet will be less than the number of inches. Divide.

There are 12 inches in 1 foot: $75 \div 12 = \frac{75}{12} = 6\frac{3}{12}$.

The whole number, 6, is the number of feet and the fraction, $\frac{3}{12}$, is $\frac{1}{4}$ foot. $\frac{1}{12}$ foot is 1 inch, so $\frac{3}{12}$ foot is 3 inches.

75 inches $= 6$ feet, 3 inches

Solution

6 feet, 3 inches

17. **How many quarts are there in $10\frac{1}{2}$ gallons?** (4 quarts $= 1$ gallon)

Show your work.

Solution
18 One kilogram is equivalent to 1,000 grams. How many kilograms are equivalent to 450 grams?

Show your work.

![Image of a girl with a speech bubble saying, “Will the number of kilograms be greater or less than 450?”]

Solution

19 There are 1,000 millimeters in 1 meter. How many millimeters are in 118 meters? Circle the letter of the correct answer.

- **A** 0.0118 millimeter
- **B** 0.118 millimeter
- **C** 118,000 millimeters
- **D** 1,180,000 millimeters

Emily chose **B** as the correct answer. How did she get that answer?

![Image of a boy with a speech bubble saying, “Which is a larger unit, millimeters or meters?”]

Pair/Share

Did you and your partner solve the problem the same way?

![Image of a speech bubble saying, “Does Emily’s answer make sense?”]

Pair/Share

Does Emily’s answer make sense?
Solve the problems.

1. How many grams are equivalent to 75 kilograms?
 - A 0.0075 gram
 - B 0.075 gram
 - C 75,000 grams
 - D 750,000 grams

2. How many yards and feet are equivalent to 10,000 feet?
 - A 3,333 yards, 0 feet
 - B 3,333 yards, 1 foot
 - C 277 yards, 28 feet
 - D 30,000 yards, 0 feet

3. Write each measurement below in the table under an equivalent measure. Some of the measurements may not have an equivalent measure.

 \[
 \begin{align*}
 \frac{1}{2} \text{ quart} & \quad 4 \text{ pints} & \quad 16 \text{ cups} & \quad \frac{1}{4} \text{ gallon} & \quad 8 \text{ pints} \\
 \end{align*}
 \]

<table>
<thead>
<tr>
<th>1 gallon</th>
<th>1 quart</th>
<th>1 pint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Five measurements are shown below. Write one of the measurements on each of the lines to create two true equations.

\[
\begin{align*}
300 \text{ millimeters} & \quad 30 \text{ meters} & \quad 3,000 \text{ meters} & \quad 3 \text{ kilometers} & \quad 3,000 \text{ centimeters} \\
\underline{\text{ }} & = & \underline{\text{ }} & = & \underline{\text{ }}
\end{align*}
\]

5 How many pints are equivalent to 3 gallons?

Show your work.

Answer \underline{\text{ }} \text{ pints}

6 Complete each conversion below.

Show your work.

a. \(3 \text{ feet} + 7 \text{ inches} = \underline{\text{ }} \text{ inches}\)

b. \(2 \text{ gallons} - 5 \text{ quarts} = \underline{\text{ }} \text{ quarts}\)

c. \(5 \text{ pounds} - 38 \text{ ounces} = \underline{\text{ }} \text{ ounces}\)

d. \(60 \text{ centimeters} + 4 \text{ meters} = \underline{\text{ }} \text{ centimeters}\)

e. \(2,000 \text{ meters} + 5,000 \text{ meters} = \underline{\text{ }} \text{ kilometers}\)

f. \(1 \text{ liter} - 150 \text{ milliliters} = \underline{\text{ }} \text{ milliliters}\)

<table>
<thead>
<tr>
<th>Units of Length</th>
<th>Units of Capacity</th>
<th>Units of Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 foot = 12 inches</td>
<td>1 quart = 2 pints</td>
<td>1 kilogram = 1,000 grams</td>
</tr>
<tr>
<td>1 yard = 3 feet</td>
<td>1 quart = 4 cups</td>
<td>| Units of Weight</td>
</tr>
<tr>
<td>1 mile = 5,280 feet</td>
<td>1 gallon = 4 quarts</td>
<td>1 pound = 16 ounces</td>
</tr>
<tr>
<td>1 meter = 100 centimeters</td>
<td>1 liter = 1,000 milliliters</td>
<td>| Units of Weight</td>
</tr>
<tr>
<td>1 meter = 1,000 millimeters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kilometer = 1,000 meters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✔ Self Check Go back and see what you can check off on the Self Check on page 211.
<table>
<thead>
<tr>
<th>Criteria</th>
<th>4 pts</th>
<th>3 pts</th>
<th>2 pts</th>
<th>1 pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOPPING</td>
<td>Hops all of the time using one foot with bent knee and lands on the ball of the foot</td>
<td>Hops most of the time using one foot with bent knee and lands on the ball of the foot</td>
<td>Hops some of the time on one foot with bent knee</td>
<td>Unable to demonstrate a hop on one foot</td>
</tr>
<tr>
<td>Uses one foot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bends knee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lands on ball of foot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALLOPING</td>
<td>Gallops all of the time with one foot leading while the other foot chases the lead foot and has bent knees</td>
<td>Gallops most of the time with one foot leading while the other foot chases the lead foot</td>
<td>Gallops some of the time on with one foot leading</td>
<td>Unable to demonstrate a gallop with one foot leading</td>
</tr>
<tr>
<td>Bend knees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One foot chasing other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead foot stays the same</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUNNING</td>
<td>Runs all of the time on the balls of the feet moving arms in opposition to legs and both feet come off the ground</td>
<td>Runs most of the time on balls of the feet moving arms in opposition to legs</td>
<td>Runs some of the time on balls of feet moving arms</td>
<td>Unable to demonstrate a run on the balls of the feet</td>
</tr>
<tr>
<td>Balls of feet touch ground first</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms move in opposition to legs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both feet come off the ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLIDING</td>
<td>Slides all of the time in a sideways movement while one foot chases the other with the same lead foot</td>
<td>Slides most of the time in a sideways movement while one foot chases the other</td>
<td>Slides some of the time in a sideways movement while one foot chases the other</td>
<td>Unable to demonstrate a slide in a sideways movement</td>
</tr>
<tr>
<td>Sideways movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One foot chases other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead foot stays the same</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKIPPING</td>
<td>Skips all of the time in a step-hop motion alternating feet while arms swing upward with legs</td>
<td>Skips most of the time in a step-hop motion alternating feet</td>
<td>Skips some of the time in a step-hop motion alternating feet</td>
<td>Unable to demonstrate a skip in a step-hop motion</td>
</tr>
<tr>
<td>Step-hop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternates feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms swing upward with legs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUMPING</td>
<td>Jumps all of the time with bent knees using two feet and landing on balls of the feet</td>
<td>Jumps most of the time with bent knees using two feet</td>
<td>Jumps some of the time on two feet with bent knees</td>
<td>Unable to demonstrate a jump with two feet</td>
</tr>
<tr>
<td>Bend knees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uses two feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lands on balls of feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study the example problem showing how to convert between meters and centimeters. Then solve problems 1–11.

Example

How many centimeters are in 4 meters?

1 meter equals 100 centimeters.

You can multiply by 100 to find how many centimeters are in 4 meters.

\[4 \times 100 = 400 \]

There are 400 centimeters in 4 meters.

1 Which is the smaller unit, meter or centimeter?

2 How can you find how many centimeters are in 5 meters?

3 How many centimeters are in 5 meters? ______

4 Complete the table.

<table>
<thead>
<tr>
<th>meters (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>centimeters (cm)</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Write an expression that shows how to convert any number of meters to centimeters. Use \(m \) to stand for the number of meters. ____________________

6 Use the expression you wrote in problem 5 to find the number of centimeters in 9 meters.

Solve.

7 Fill in the table to show how many milliliters are in the number of liters shown.

<table>
<thead>
<tr>
<th>liters (L)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>milliliters (mL)</td>
<td>1,000</td>
<td>2,000</td>
<td>3,000</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 Write an equation to describe the relationship between each pair of numbers in the table.

__

9 Use the equation you wrote in problem 8. How many milliliters are in 9 liters?

__

10 Jack’s bicycle has a mass of 9 kilograms. What is the mass of Jack’s bicycle in grams?

Show your work.

1 kilogram = 1,000 grams

Solution: ________________________________

11 Look at problem 10. Jack’s little sister has a tricycle that has a mass of 7 kilograms. How much greater is the mass of Jack’s bicycle, in grams, than his sister’s tricycle?

Show your work.

Solution: ________________________________
Convert Measurement Units Using Multiplication

Study the example problem showing how to convert between meters and millimeters. Then solve problems 1–10.

Example

How many millimeters are in 2.52 meters?

The table below shows the relationship between meters and millimeters.

<table>
<thead>
<tr>
<th>meters (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>millimeters (mm)</td>
<td>1,000</td>
<td>2,000</td>
<td>3,000</td>
<td>4,000</td>
<td>5,000</td>
</tr>
</tbody>
</table>

The number of millimeters is always 1,000 times the number of meters.

To find the number of millimeters in 2.52 meters, multiply 2.52 by 1,000.

\[2.52 \times 1,000 = 2,520 \text{ millimeters}\]

1 Which is the larger unit, meters or millimeters? ______________

2 How can you find how many millimeters are in 4.06 meters?

3 How many millimeters are in 4.06 meters? ______________

4 Fill in the missing information in the table.

<table>
<thead>
<tr>
<th>meters (m)</th>
<th>0.34</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.09</th>
<th>3</th>
<th>3.77</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>millimeters (mm)</td>
<td></td>
<td>1,000</td>
<td></td>
<td>2,000</td>
<td></td>
<td>3,000</td>
<td></td>
<td>4,000</td>
</tr>
</tbody>
</table>

5 What operation do you use to convert from a larger measurement unit to a smaller measurement unit? Explain why.
Solve.

6 The pattern in the table shows that the number of centimeters is always 100 times the number of meters. Fill in the missing number of centimeters.

<table>
<thead>
<tr>
<th>meters (m)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.07</th>
<th>3</th>
<th>3.26</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>centimeters (cm)</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

7 In football, the goal posts in the end zone are 7.11 meters apart. How many centimeters are in 7.11 meters?

Show your work.

*Solution: ________________________________

8 There are 4 cups in 1 quart. If you want to convert quarts to cups, should you multiply or divide by 4? Explain.

__
__

9 Look at problem 8. How many cups are in 5.5 quarts?

Show your work.

*Solution: ________________________________

10 16 ounces is equivalent to 1 pound. A lion cub born at the zoo weighs $2 \frac{1}{2}$ pounds. How many ounces does the lion cub weigh?

Show your work.

*Solution: ________________________________
Convert Measurement Units Using Division

Study the example problem showing how to convert between ounces and pounds. Then solve problems 1–8.

Example

How many pounds are equivalent to 56 ounces?

The table below shows the relationship between pounds and ounces.

<table>
<thead>
<tr>
<th>pounds (lb)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ounces (oz)</td>
<td>16</td>
<td>32</td>
<td>48</td>
<td>64</td>
</tr>
</tbody>
</table>

The pattern in the table shows that there are 16 ounces in every pound.

To find the number of pounds equivalent to 56 ounces, divide by 16.

\[56 \div 16 = 3 \frac{1}{2} \]

3 \(\frac{1}{2}\) pounds is equivalent to 56 ounces.

1. Which is the smaller unit, pounds or ounces? ________________

2. What operation do you use to convert from a smaller measurement to a larger measurement unit? ________________

3. Look at the example problem. Explain how you can use multiplication to check the answer.

4. Use the relationship between pounds and ounces shown in the example to complete the table below.

<table>
<thead>
<tr>
<th>pounds (lb)</th>
<th></th>
<th>1</th>
<th></th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ounces (oz)</td>
<td>8</td>
<td>16</td>
<td>20</td>
<td>32</td>
<td>40</td>
</tr>
</tbody>
</table>
Solve.

5 One yard is equivalent to 3 feet. How many yards are equivalent to 38 feet?

Show your work.

Solution: ________________________________

6 1 quart is equivalent to 4 cups. How many quarts are equivalent to 60 cups?

Show your work.

Solution: ________________________________

7 When converting between two measurement units, how can you tell which operation to use?

__
__
__
__

8 1 gallon is equivalent to 4 quarts, and 1 quart is equivalent to 4 cups. How many gallons are equivalent to 24 cups?

Show your work.

Solution: ________________________________
Convert Measurement Units

Solve the problems.

1. Jillian has a rope that is 50 inches long. Write the length of her rope in feet and inches. Explain how you converted the units of measurement.

 Show your work.

 Solution: __
 __
 __
 __

2. 1 kilogram is equivalent to 1,000 grams. How many grams are in 3.5 kilograms? Circle the letter of the correct answer.

 A 0.35 gram C 3,500 grams
 B 3.5 grams D 35,000 grams

 Rodney chose D as the correct answer. How did he get that answer?

 __
 __
 __
 __
 __
3. 1 gallon is equivalent to 8 pints. Fill in the table with the missing number of gallons or pints.

<table>
<thead>
<tr>
<th>gallons</th>
<th>1</th>
<th>2</th>
<th></th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pints</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Which measurement unit is smaller? Which is larger?

Solution: __

4. 1 liter is equivalent to 1,000 milliliters. How many liters are in 2,500 milliliters?

Show your work.

Solution: __

5. There are 2 cups in one pint. How many cups are in 5 pints?

Show your work.

Solution: __

6. What operation would you use to convert cups to gallons? Explain.

Solution: __

What example could I use to test my answer?
Lesson 8
Finding the Theme of a Poem

Learning Target

Studying how a poet reflects upon a topic and the details she includes will help you identify the theme of a poem.

Read

Poems can express feelings and ideas on many topics. The speaker in a poem reflects on a topic by saying what he or she thinks and feels about it. You can use these reflections and other details in a poem to figure out that poem’s message, or theme.

Identify the theme of this comic strip by studying what the characters say and do. Also think about how the comic strip ends.

I’m stressed about my homework!

Here, let me show you what I do when I’m stressed.

What, you just...

Ssssh...

Thanks, buddy—I needed that.

Wow...

Thanks, buddy—I needed that.
Think What have you learned so far about using details to identify a theme? Complete the chart below, filling it out with details from the comic strip.

<table>
<thead>
<tr>
<th>What Do the Characters Say?</th>
<th>What Do the Characters Do?</th>
<th>How Does the Comic Strip End?</th>
<th>What Is the Theme?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Night can ease the worries of the day.</td>
<td></td>
</tr>
</tbody>
</table>

Talk Share your chart with a partner.

- What is the topic of the comic strip?
- Did you describe in the same way what the friends say and do? How about the ending?
- Do the details you found support the theme? How do you know?

Academic Talk

Use these words to talk about the text.

- theme
- speaker
- topics
- reflect
For desert animals, the day
Is not a time for work or play.
There’s little shade; the world is dry.
The clouds are absent from the sky.
5 Things sizzle in the searing heat,
The burning sands hurt creatures’ feet—
And so when it turns light they creep
Beneath the ground to fall asleep.

But late in the day the sky grows dim.
10 The sun drops past the canyon rim.
The stars peek through, and very soon
The night replaces afternoon.
Inside their dens the creatures stir—
They like the cooler temperature.
15 By ones and twos, by fives and tens
The animals creep from their dens.

On mountain, prairie, plain, and hill,
The night is when the world is still.
In deserts, though, the times reverse:
20 The dark is good, the light is worse.
The daytime is the time to rest.
For desert creatures, night is best.

The desert fox, the mouse, the hare,
At night they scamper here and there.
25 Their claws scratch softly in the sand.
Their faint calls echo through the land.
From dusk to dawn, all through the night
They feed and play till morning light.

Close Reader Habits

When you reread the poem, circle words and phrases that tell the topic of the poem. Then underline details that show the speaker’s reflections on the topic.
What details in the poem “Darkness in the Desert” develop its theme?

Think

1. Complete the chart below. Identify the poem’s topic, the details that develop the topic, and the speaker’s reflections on the topic. Use this information to determine the theme of the poem.

<table>
<thead>
<tr>
<th>What Is the Topic of the Poem?</th>
<th>What Are the Details About the Topic?</th>
<th>What Are the Speaker’s Reflections on the Topic?</th>
<th>What Is the Theme of the Poem?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Talk

2. Share your charts. Did you and your partner identify the same theme? What details did you use to support your understanding of the poem’s theme? If necessary, return to your chart to change or add details.

Write

3. **Short Response** What is the theme of the poem “Darkness in the Desert”? Use examples from the poem and your chart to support your response. Use the space provided on page 140 to write your answer.

HINT Start your response by stating the theme in one sentence.

Look for evidence of what the speaker thinks about day and night in the desert.
NIGHT WALK

by Amy Saito

1 The sky above, the streets below,
 The stars reflecting off the snow—
 A lovely night for us to go
 Out for a walk, the puppy thinks.

5 The moon’s a brilliant shade of gold,
 And though she’s just a few months old,
 The puppy knows the night is cold—
 She leans into the wind and blinks.

 What’s that thing moving in the tree?
10 The puppy dashes up to see.
 It’s vanished! What a mystery!
 She sits beneath the tree to bark.

 Her master guides her through the night
 First turning left, then turning right
15 The dark is deep, there is no light
 She yanks her leash: is this the park?

 The night’s a lovely time to roam
 But now it’s time for heading home.
 She’s only little, after all,
20 Can’t run all night when she’s so small.

 Someday she’ll grow a little more
 And when she’s three, or maybe four
 She’ll run all night, and she’ll be tough—
 Tonight, though, she’s gone far enough.

25 Her master strokes her furry head,
 And yawning, she goes off to bed.
 But as she sleeps, the moonlight beams
 Will dart and dance inside her dreams.
Think Use what you learned from reading the poem to answer the following questions.

1. This question has two parts. Answer Part A. Then answer Part B.

 Part A
 How are the events in stanzas three and four important to the theme of the poem?
 - A. The events show it is a good night for a walk.
 - B. The events show that puppy is young and active.
 - C. The events show the speaker is the puppy’s master.
 - D. The events show that the night is dark and dangerous.

 Part B
 Select one choice from each stanza that best supports the answer to Part A.
 - A. “What’s that thing moving in the tree?” (stanza three)
 - B. “The puppy dashes up to see.” (stanza three)
 - C. “. . . sits beneath the tree. . . .” (stanza three)
 - D. “Her master guides her . . .” (stanza four)
 - E. “. . . there is no light . . .” (stanza four)
 - F. “She yanks her leash: . . .” (stanza four)

Talk

2. What details in the poem can help you identify the topic and the theme of “Night Walk”? Use the chart on page 141 to record such details.

Write

3. **Short Response** Describe the topic and the theme of the poem “Night Walk.” Use details from the poem and your chart to support your response. Use the space provided on page 141 to write your answer.
3 Short Response What is the theme of the poem “Darkness in the Desert”? Use examples from the poem and your chart to support your response.

Check Your Writing

☐ Did you read the prompt carefully?
☐ Did you put the prompt in your own words?
☐ Did you use the best evidence from the text to support your ideas?
☐ Are your ideas clearly organized?
☐ Did you write in clear and complete sentences?
☐ Did you check your spelling and punctuation?

Don’t forget to check your writing.
Use the chart below to organize your ideas.

<table>
<thead>
<tr>
<th>What Is the Topic of the Poem?</th>
<th>What Are the Details About the Topic?</th>
<th>What Are the Speaker’s Reflections on the Topic?</th>
<th>What Is the Theme of the Poem?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write Use the space below to write your answer to the question on page 139.

3 **Short Response** Describe the topic and the theme of the poem “Night Walk.” Use details from the poem and your chart to support your response.

__

__

__

__

__

__

__

__

__
I'm scared of the darkness, I don't care who knows it, I don't like the darkness at all. I sleep with the lights on—two lights in my room, And a much brighter light in the hall. I'm frightened of monsters that might come and get me, Whenever I climb into bed. My mother says, "Anna, you're just being silly, The monsters are all in your head!"

But I don't think that's true, because of what happened Last night, the first day of the week. I put on my nightgown, got under the covers— Rolled over, and heard a strange squeak. It wasn't a mouse, and it wasn't a rabbit, It wasn't a dog or a cat. So I screamed out in terror. My mother came running! "Whatever," she asked me, "was that?"

"I heard a strange noise!" I explained to my mother, I was almost too frightened to talk. I knew it was monsters, some big hungry monsters, It was all I could do not to squawk! "I don't like the darkness," I said to my mother, "I don't like the dark and the night. Can't I get up and sit with you out on the couch, In a room that's all cheery and bright?"
“Oh, Anna,” Mom said, and she looked at me sadly. “Do we need to go through this once more? Last night you assured me that you saw a monster—It turned out to be socks on the floor.” "But this one was real!” I complained to my mother.

“I heard it squeak loudly and clear! I don't like the darkness, the monsters will eat me—Don't let them come anywhere near!”

My mother explained that the noises weren't monsters; She showed me some interesting things.

For example, I learned that my bed makes a squeak When you push down too hard on the springs. So there weren't any monsters, they didn't exist, And I know that my mother was right… But what if those monsters that never existed Come into my bedroom tonight?
Think Use what you learned from reading the poem to answer the following questions.

1 This question has two parts. First, answer Part A. Then answer Part B.

Part A
Read the line from the first stanza of the poem.

The monsters are all in your head!

Which phrase best states the meaning of all in your head?

A easy to see
B ready to attack you
C only imagined
D giving you a headache

Part B
Which detail in the first stanza best helps the reader understand the meaning of all in your head?

A “I’m scared of the darkness, . . .”
B “I sleep with the lights on, . . .”
C “Whenever I climb into bed.”
D “Anna, you’re just being silly, . . .”

2 Which statement best summarizes the speaker’s message about fears?

A For most people, nighttime is scary because it is dark and quiet and nobody is awake.
B Many people are much too fearful, and some are even afraid of their own surroundings.
C It can be hard to stop being afraid, even when someone proves that what you fear is not real.
D It is easy to get over a fear once someone shows you that your fear is based on something that is not real.
3 This question has two parts. First, answer Part A. Then answer Part B.

Part A
How are the events in stanzas two and three important to the poem’s theme?

A. These events show Anna doesn’t like the dark of night because that is when she sees the monsters.
B. These events show Anna remembers it was last night that she heard a squeak.
C. These events show Anna’s mother comes running in fear when Anna screams.
D. These events show Anna believes that monsters make the noises that scare her in the dark.

Part B
Select one choice from each stanza that best supports the answer to Part A.

A. “. . . because of what happened. . . .” (stanza two)
B. “. . . I screamed out in terror.” (stanza two)
C. “. . . ‘Whatever,’ she asked me, ‘was that?’” (stanza two)
D. “I knew it was monsters, . . .” (stanza three)
E. “It was all I could do. . . .” (stanza three)
F. “. . . a room that’s all cheery and bright?” (stanza three)

4 Which line from the poem best summarizes a theme of the poem?

A. “’The monsters are all in your head!’” (line 8)
B. “Rolled over, and heard a strange squeak.” (line 12)
C. “So I screamed out in terror. My mother came running!” (line 15)
D. “’I don’t like the darkness,’ I said to my mother,” (line 21)
SUMMER NIGHT

by Bianca Cappeletta

1 The city is full of streetlights, stoplights, floodlights making it hard to see the stars
But Ben and Louie are out this summer night at ten PM in front of their apartment building, peering up at the sky anyway.
5 Ben asks if that’s the constellation Orion hovering over there just above that billboard
Louie shrugs because he doesn’t know for sure
He asks how many light-years to the edge of the universe and what’s beyond the edge when you get there
10 if you could get there (which you probably can’t, but if you could)
Ben says he doesn’t know for sure either
It’s a vast place, the universe, but what’s beyond it must be vaster still
And they know they should go inside and get ready for bed but it’s too wonderful out here below the faint glow of the stars
15 and they just can’t
Learning Target

In this lesson, you used details from poems to identify their themes. Explain why this activity is important for understanding poetry in general.

Write Use what you learned from reading “Summer Night” to answer the following question.

5 Short Response What is the theme of the poem “Summer Night”? Use details from the poem to support your answer.
In Lesson 21, you converted between different units of measure. In this lesson, you will convert measurement units to solve real-world problems.

Ray finds a log that is 90 inches long. How long is the log in yards and inches?

(1 yard = 3 feet = 36 inches)

a. The length of the log is given in what unit? __________________________

b. The problem asks to find the length of the log in what units? __________________________

c. Circle the larger unit below.

 yard inch

d. To convert yards to inches, what operation do you use? __________________________

 To convert inches to yards, what operation do you use? __________________________

e. 1 yard is equivalent to 3 feet or _________ inches.

f. Explain how to express 90 inches in yards and inches.

__

__

__
When you convert from one unit of measure to another, you need to know the relationship between the two units.

Think about the log. Instead of giving the length in yards, you could give the length in feet.

- To change yards to feet, you need to know that there are 3 feet in 1 yard. Because feet are smaller than yards, you will have more feet than yards.
- To change feet to inches, you need to know that there are 12 inches in 1 foot. Because feet are larger than inches, you will have fewer feet than inches.

A yardstick is shown below. Look at the relative sizes of 1 yard, 1 foot, and 1 inch.

Reflect

1. Describe how you know whether to multiply or divide when converting one unit of measure to another.
Read the problem below. Then explore different ways to understand how to convert the units to solve the problem.

Corrina is making punch for a family reunion. Her recipe calls for $2 \frac{1}{2}$ cups of lemonade per batch. She plans to make 20 batches of punch for the reunion. How many gallons of lemonade does she need?

Picture It You can use a picture to understand the relationship between cups and gallons.

1 gallon = 16 cups

Model It You can write an equation to find how many cups of lemonade Corrina needs.

Corrina needs to make 20 batches of punch. You need to multiply 20 by the number of cups Corrina needs for 1 batch.

\[
20 \times 2 \frac{1}{2} = 20 \times \left(2 + \frac{1}{2}\right) = 20 \times 2 + 20 \times \frac{1}{2} = 40 + 10 = 50
\]

Corrina needs 50 cups of lemonade.
Connect It Now you will solve the problem from the previous page by converting units.

2 What do you need to convert units of measure to solve the problem?

__
__

3 What operation do you use to convert 50 cups to gallons? Explain.

__

4 Find how many full gallons of lemonade Corrina needs. Will there be any cups left over?

__

5 If Corrina could only buy whole gallons of lemonade at the store, how many gallons would she need to buy? __________ Explain your reasoning. __

__

6 What if lemonade is only sold in quarts? How could you find the number of quarts Corrina would need? (1 quart = 4 cups) __

__

Try It Use what you just learned about converting units of measure to solve this problem. Show your work on a separate sheet of paper.

7 The pet store salesman told Evan to feed his dog 8 ounces of food per day. At that store, dog food is sold by the pound. How many pounds of food does Evan need to buy to feed his dog for 2 weeks? (16 ounces = 1 pound) ___________________________
Read the problem below. Then explore different ways to understand how to convert the units to solve the problem.

Heather and Diego measured worms in their class compost bin. Heather measured a 3.5-centimeter worm and Diego measured a 28-millimeter worm. Who measured the longer worm?

Picture It You can use a picture to help understand the relationship between centimeters and millimeters.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
<td>10 20 30 40 50</td>
</tr>
</tbody>
</table>

There are 10 millimeters in each centimeter.

Model It You can write equations to convert centimeters to millimeters or millimeters to centimeters.

To compare the lengths, both measurements need to be in the same unit.

Convert centimeters to millimeters:

There are 10 millimeters in each centimeter.

\[3.5 \times 10 = 35\]

3.5 centimeters is 35 millimeters.

Convert millimeters to centimeters:

There are 10 millimeters in each centimeter.

\[28 \div 10 = 2.8\]

28 millimeters is 2.8 centimeters.
Connect It Now you will solve the problem from the previous page by converting units.

8 Why do you need to convert one of the units of measure to solve the problem?

__

__

__

9 Why do you multiply to convert centimeters to millimeters?

__

__

Why do you divide to convert millimeters to centimeters?

__

__

10 Who measured the longer worm? How do you know?

__

__

__

11 If a third student measured a worm in centimeters, how could you figure out which of the three students measured the longest worm?

__

__

__

Try It Use what you just learned about converting units of measure to solve this problem. Show your work on a separate sheet of paper.

12 A lemur at an animal park weighs 8 pounds, 3 ounces. The zookeeper records the weight of the lemur in ounces. What will the zookeeper write for the weight of the lemur? (1 pound = 16 ounces)
Study the example below. Then solve problems 13–15.

Example

Pierre is 53 inches tall. What is his height in feet and inches?

Look at how you could explain your work.

Feet are longer than inches, so there are fewer feet than inches. You need to divide.

There are 12 inches in 1 foot, so divide 53 by 12.

53 ÷ 12 is 4 with a remainder of 5.

53 inches = 4 feet, 5 inches

Solution

4 feet, 5 inches

13 Venell put together a model train with 25 train cars. Each train car is 80 millimeters long. How many meters long is Venell’s model train if there are no gaps between the cars? (1 meter = 1,000 millimeters)

Show your work.

Solution

Orla bought a 1-quart container of buttermilk to make pancakes. Her recipe uses \(\frac{1}{2} \) cup of buttermilk for 3 pancakes. How many pancakes can Orla make? (1 quart = 4 cups)

Show your work.

Solution

Bennett is getting in shape for football season. He runs 400 yards 3 times each day for 5 days. Which shows the correct way to find the number of miles Bennett will run in 5 days? Circle the letter of the correct answer. (1 mile = 1,760 yards)

A. \(400 \times 3 \times 5 \times 1,760 \)

B. \(400 \div (3 \times 5) \div 1,760 \)

C. \(400 \times (3 + 5) \div 1,760 \)

D. \(400 \times 3 \times 5 \div 1,760 \)

Jory chose A as the correct answer. How did he get that answer?
Solve the problems.

1. A football field is marked every 5 yards. Garrett ran from the first mark to the eleventh mark. Which shows a correct expression to find the number of feet Garrett ran?

 1 yard = 3 feet

 A. $10 \times 5 \div 3$
 B. $10 \div 5 \div 3$
 C. $10 \times 5 \times 3$
 D. 5×3

2. Mr. Wayne’s class collected empty soda cans for a recycling project. Each of the 20 students had to collect 40 cans. Each can has a mass of 15 grams. How many kilograms of cans did the class collect to recycle?

 1 kilogram = 1,000 grams

 A. 0.6 kilogram
 B. 12 kilograms
 C. 12,000 kilograms
 D. 12,000,000 kilograms

3. Susan is stacking boxes on a shelf. Each box is shaped like a rectangular prism and has a length of 2 feet, a width of 15 inches, and a height of 3 inches, as shown below.

Susan will stack the boxes on top of each other, as shown in the diagram below. The space above the shelf is $1\frac{1}{2}$ yards high.

What is the greatest number of boxes that Susan can stack on the shelf?

__________________ boxes
4 The Russell family is keeping track of the milk they drink each week.

- The first week they drank 2 gallons, 1 quart, and 1 cup of milk.
- The second week they drank 3 gallons of milk.

How many more cups of milk did they drink the second week than the first? _____ cups

1 gallon = 4 quarts = 16 cups

5 Lana’s family entered a 5-kilometer race.

1 kilometer = 1,000 meters

Part A Lana’s dad said his average step length is about 1 meter. About how many steps will he need to take to finish the race?

Show your work.

Answer About ____________ steps

Part B Lana’s average step length is about 0.5 meter. How many steps will she need to take to finish the race?

Show your work.

Answer About ____________ steps

Self Check Go back and see what you can check off on the Self Check on page 211.
Name: ______________________ Grade: ________ Class: ______________________

<table>
<thead>
<tr>
<th>Station #</th>
<th>Exercise</th>
<th>Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Push-Ups</td>
<td>How many push-ups can you do?</td>
</tr>
<tr>
<td>2</td>
<td>Stretch</td>
<td>How many muscles can you safely stretch? Hold stretches for 10 seconds each.</td>
</tr>
<tr>
<td>3</td>
<td>Sit-Ups</td>
<td>How many sit-ups can you do?</td>
</tr>
<tr>
<td>4</td>
<td>Pass and Catch</td>
<td>How many times can you pass and catch a ball with a partner?</td>
</tr>
<tr>
<td>5</td>
<td>Water</td>
<td>Remember to stay hydrated. Get 1 quick and quiet drink.</td>
</tr>
<tr>
<td>6</td>
<td>Jump and Think</td>
<td>How many fruits can you name while jumping an invisible jump rope?</td>
</tr>
<tr>
<td>7</td>
<td>Bicep Curls</td>
<td>How many bicep curls can you do with a household item (milk jug, tv remotes, bottle of water, etc.)?</td>
</tr>
<tr>
<td>8</td>
<td>Plank</td>
<td>How long can you hold a plank?</td>
</tr>
<tr>
<td>9</td>
<td>Balance and Think</td>
<td>Balance on one foot. How many vegetables can you name?</td>
</tr>
<tr>
<td>10</td>
<td>Heart Rate</td>
<td>Take your pulse for the full minute. How many beats did you count?</td>
</tr>
</tbody>
</table>
Lesson 16
Understanding Literary Structure

Learning Target
Knowing how dramas and poems are structured will help you better understand what they mean.

Read
Dramas and poems have structures that organize what they say and help the reader understand what they mean.

- Dramas are divided into acts. Each act tells a main part of the drama. Acts are often divided into scenes, which show different times and places.
- Poems are often organized in stanzas, or groups of lines that have something in common.

Examining how such features work together can help you understand not just how a text is structured but why it is structured that way.

Read this poem. Notice how the lines are organized into stanzas. Why do you think the poet organized the lines this way?

FROM
“The Months” by Sara Coleridge

January brings the snow,
Makes our feet and fingers glow.

February brings the rain,
Thaws the frozen lake again.

March brings breezes loud and shrill,
Stirs the dancing daffodil.
Think Consider what you know about the features of dramas and poems. What are their main features? What purposes do those features share? Use the Venn diagram to organize your thoughts.

Drama Only

Features and Their Purposes

Acts:

Scenes:

Poem Only

Feature and Its Purpose

Stanzas:

Both

The features organize what the text says.

The features help the reader understand what the text means.

Use the words *lines* and *stanzas* to describe the structure of “The Months.” Explain why the poet chose the structure she did.

Talk Discuss the poem “The Months” with a partner.

- What features of poetry did you see in the excerpt from “The Months”?
- How did those features help you understand what the poem is about?

Academic Talk Use these words to talk about the text.

- acts
- scenes
- dramas
- stanzas
- structures
A Very Tall Tale

a play in one act, by Tina Frank

1 CAST OF CHARACTERS: Todd, a fifth-grade student, and Sally, his older sister

2 SCENE 1: [A hallway outside a door marked PRINCIPAL. Tall windows line the hall. Two children sit on chairs. The boy seems calm. The girl seems restless and upset.]

3 Sally: [She jumps from her chair, paces back and forth, then stops.] How can you just calmly sit there, Todd? I told you that you’d get in trouble if you kept making things up. You’d better tell the truth to Ms. Johnson.

4 Todd: But, Sally, I’m not making things up. I keep seeing a dinosaur outside the school. I’m not sure, but I think it’s an Apatosaurus.

5 Sally: And it’s hiding from everyone else? How can that be? [She drops back in her chair, crosses her arms, and sighs. The door opens and Todd stands up.]

6 Todd: I wish I knew. [He stops, facing the windows, where a huge shadow that looks like a small head on a long neck moves past and then disappears. Todd goes into the principal’s office.]

7 SCENE 2: [Todd’s classroom, on a second story of the school. Sally stands with her back to the windows. Todd faces them.]

8 Sally: [shaking her head] I can’t believe you wouldn’t change your story for Ms. Johnson! [As she speaks, the head and neck of a huge dinosaur rise in the window behind her.] I’ve had enough of your tall tales for one day! [She storms out of the room. The dinosaur’s head comes through an open window. It stretches its long neck toward Todd and lowers its head to him. Todd cautiously pets the dinosaur’s head, which moves under his hand as if it likes it.]

9 Todd: Well, I guess I’ll be seeing you tomorrow. [He picks up his backpack and races after his sister as the dinosaur looks on.]
Explore

How do Scenes 1 and 2 work together to tell a complete story?

Think

1. Complete the chart below by writing about Scene 1 in the first column and Scene 2 in the second column.

<table>
<thead>
<tr>
<th>Scene 1</th>
<th>Scene 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting:</td>
<td>Setting:</td>
</tr>
<tr>
<td>What happens:</td>
<td>What happens:</td>
</tr>
</tbody>
</table>

Talk

2. Use the questions below to discuss how Scenes 1 and 2 work together to produce a complete story.

- In Scene 1, whom do you believe at first: Todd or Sally?
- At the end of Scene 1, do you know for certain what the “huge shadow” is?
- What happens in Scene 2 that brings the suspense to an end?

If needed, use your answers to these questions to improve your charts.

Write

3. **Short Response** Explain how Scenes 1 and 2 work together to produce a complete story about Todd, Sally, and the dinosaur. Use details from both scenes and your chart to support your response. Use the space provided on page 286 to write your answer.
Three Wise Old Women

by Elizabeth T. Corbett

1 Three wise old women were they, were they,
 Who went to walk on a winter day:
 One carried a basket to hold some berries,
 One carried a ladder to climb for cherries,
 The third, and she was the wisest one,
 Carried a fan to keep off the sun.

 But they went so far, and they went so fast,
 They quite forgot their way at last,
 So one of the wise women cried in a fright,
 “Suppose we should meet a bear tonight!
 Suppose he should eat me!” “And me!” “And me!!!”
 “What is to be done?” cried all the three.

 “Dear, dear!” said one, “we’ll climb a tree,
 There out of the way of the bears we’ll be.”

 But there wasn’t a tree for miles around;
 They were too frightened to stay on the ground,
 So they climbed their ladder up to the top,
 And sat there screaming “We’ll drop! We’ll drop!”

 But the wind was strong as the wind could be,

20 And blew their ladder right out to sea;
 So the three wise women were all afloat
 In a leaky ladder instead of a boat,
 And every time the waves rolled in,
 Of course the poor things were wet to the skin.

 Then they took their basket, the water to bale,
 They put up their fan instead of a sail:
 But what became of the wise women then,
 Whether they ever sailed home again,
 Whether they saw any bears, or no,

30 You must find out, for I don’t know.

Close Reader Habits

Stanzas 1 through 4 each describe one main event. Reread the poem. Underline one line in each stanza that sums up the event the stanza describes.
Think Use what you learned from reading the narrative poem to answer the following questions.

1 This question has two parts. Answer Part A. Then answer Part B.

Part A
What purpose do stanzas 1 and 2 serve in “Three Wise Old Women”?
A They show the women’s fear of meeting a bear.
B They introduce all three women and a problem they face.
C They show that the third woman was the wisest of the three.
D They describe the adventures the three women have after they get lost.

Part B
Choose one detail from each stanza to support your answer to Part A.
A “Three wise old women were they, were they” (stanza 1)
B “One carried a basket to hold some berries,” (stanza 1)
C “The third, and she was the wisest one” (stanza 1)
D “But they went so far, and they went so fast” (stanza 2)
E “They quite forgot their way at last” (stanza 2)
F “So one of the wise women cried in a fright” (stanza 2)

Talk
2 Describe what stanzas 3 and 4 add to the narrative in terms of settings and events. Use the chart on page 287 to organize your ideas and record details from the stanzas.

Write
3 Short Response Explain how stanzas 3 and 4 help to develop the narrative. Using your chart, support your answer with two details from the text. Use the space provided on page 287 to write your answer.

Like the early paragraphs of a story, the early stanzas of a narrative poem may introduce the characters, a setting, and a problem.

HINT First describe what happens in stanzas 3 and 4. Then explain how they connect the beginning to the end of the poem.
A Very Tall Tale

3 Short Response Explain how Scenes 1 and 2 work together to produce a complete story about Todd, Sally, and the dinosaur. Use details from both scenes and your chart to support your response.

HINT Consider how your understanding of the drama would differ if you had read only Scene 1.

Check Your Writing

☐ Did you read the prompt carefully?
☐ Did you put the prompt in your own words?
☐ Did you use the best evidence from the text to support your ideas?
☐ Are your ideas clearly organized?
☐ Did you write in clear and complete sentences?
☐ Did you check your spelling and punctuation?
Three Wise Old Women

2 Use the chart below to organize your ideas.

<table>
<thead>
<tr>
<th>Stanza 3</th>
<th>Stanza 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write Use the space below to write your answer to the question on page 285.

3 Short Response Explain how stanzas 3 and 4 help to develop the narrative. Using your chart, support your answer with two details from the text.

HINT First describe what happens in stanzas 3 and 4. Then explain how they connect the beginning to the end of the poem.
CAST OF CHARACTERS: Fenwick Barnes, a famous detective; Dr. Arthur Hamish, friend and assistant to Barnes; Lady Victoria Milton, owner of the house; Diana Dumont, a singer; Rupert, a piano player; Giles, the butler; Wendy, the maid; Count Otto Orlog, a visitor; Misha, the count’s pet monkey; assorted guests.

ACT ONE: [The curtain opens on the music room of the mansion. Diana is singing as Rupert plays the piano. The guests are seated in rows of chairs around the piano, listening with complete attention. The exception is Fenwick Barnes, who is clearly falling asleep in the back row. As Diana hits a long high note, the sleeping Barnes falls back into a shelf. A large vase falls off the shelf into his lap. He catches it. Only Wendy, the maid, sees what caused the vase to fall. She gasps. The concert stops, and everyone turns to Barnes.]

Lady Milton: Oh, Mr. Barnes! You’ve saved the day again.

Barnes: A detective is always on his toes. Even when he is seated. [He stands, nearly dropping the vase.]
5 Lady Milton: [taking the large blue and white vase from his hands] This vase is priceless to me! It is a rare moonflask from the Ming Dynasty in China. It's worth millions! Whatever could have made it fall?
6 Dr. Hamish: Perhaps the vibrations from the piano and Miss Dumont's extraordinary voice shook it from its place.
7 Barnes: Yes, Doctor! Good work! Let's go with that theory.
8 Count Orlog: May I see this beautiful moonflask? [He sets his monkey on the piano and takes the vase.] Oh, what I wouldn't do to have a piece like this!
9 Diana: Wouldn't we all, Count, wouldn't we all! [The guests all nod in agreement.]

ACT TWO: [The next morning. Lady Milton walks into the music room, looks around, then screams. All her guests, including Barnes, in a long nightshirt and nightcap, come running into the room.]
10 Lady Milton: My Ming! It's gone! It's been stolen!
11 Dr. Hamish: But surely none of your honored guests would do such a thing!
12 Barnes: [looking from face to face] And yet, last night, every single person in the room expressed the wish that he or she might possess such a piece of priceless beauty! [The guests all mutter amongst themselves, offended.] Someone is missing. Where is Wendy, the maid?
13 Lady Milton: Why, she left at dawn for her mother's in the village. It's her day off.
14 Barnes: Everyone else stays until we get to the bottom of this. [He turns to Dr. Hamish.] A private word with you, Doctor. [He leads him away from the other guests.] There's one thing you must do for me.
15 Dr. Hamish: Anything, Fenwick! You know that!
16 Barnes: Don't let me sleep past noon. I've got a case to solve! [He leaves the room.]
18 ACT THREE: [Evening of the same day. The guests, looking anxious, are all gathered in the music room.]

19 Dr. Hamish: Thank you all for coming. Mr. Barnes will be here shortly to solve the mystery. [At that moment, Barnes enters the room rolling a large barrel, which he stands upright.] Good heavens. Barnes! What are you doing with a barrel of herring?

20 Lady Milton: And have you solved the case?

21 Barnes: I think I know where the vase is, and why. But I’m not so sure about who put it there. [He pries the lid from the barrel and starts throwing fish over his shoulder. Giles, the butler, runs back and forth, catching them.] Where is the last place you would look for a priceless vase?

22 Dr. Hamish: Why, in a fish barrel, I suppose.

23 Barnes: Exactly! But the purpose was not just to hide the vase; it was to protect it. The herring provide a perfectly safe cushion around such a fragile object. Ah, I have it! [Just as he pulls the vase from the barrel, Wendy enters wearing her hat and coat.]

24 Wendy: Oh, no! You’ve found it!

25 Barnes: Safe and sound, just as you intended. [He turns to the guests.] You see, the vase never actually was stolen. After the events of last night, Wendy meant only to protect it.

26 Wendy: What you say is true, sir. I know how much the Ming means to Lady Milton. And you sir, more than anyone, know how accidents can happen.

27 Barnes: And that’s why you’d best look after this. [As he walks toward Wendy, he trips. The vase flies high into the air but Wendy catches it.] Case solved!
Think Use what you learned from reading the drama to answer the following questions.

1. Why did the playwright most likely include stage directions in line 2?
 A. to give details about who the characters are
 B. to let the audience know who stole the Ming vase
 C. to explain that the play is set in the music room of a wealthy woman’s mansion
 D. to describe the setting and events that happen before the first actor’s line

2. The playwright used the event of the concert in Act One to set up events for Act Two and Act Three. Why did the playwright most likely do this?
 A. to explain to the audience why Fenwick Barnes fell asleep
 B. to describe the value of, and interest in, the Ming moonflask
 C. to explain why Lady Milton thinks Fenwick Barnes is a great detective
 D. to describe a theory about how sound vibrations can make things fall

3. Read line 13 from Act Two of the drama.

 BARNES: [looking from face to face] And yet, last night, every single person in the room expressed the wish that he or she might possess such a piece of priceless beauty! [The guests all mutter amongst themselves, offended.] Someone is missing. Where is Wendy, the maid?

 Select three choices that best describe why the playwright included line 13.
 A. to show Lady Milton’s distress over the loss
 B. to show that every person is a suspect
 C. to show the value of the Ming vase
 D. to show the characters’ suspicion of Wendy
 E. to show the guests do not like Barnes
 F. to show that no guest caused the vase’s disappearance
4. What is the meaning of the phrase **saved the day** as it is used in line 3?

 A. stopped a disaster
 B. kept the sun from setting
 C. gave a solution to a problem
 D. set aside time for planning

Write

How do the three acts work together to provide the structure for the events of “The Case of the Missing Ming”? Reread the play. Underline the key events in each act. Then complete numbers 5 and 6.

5. **Plan Your Response** Think about the following details in the play: How the characters are introduced, when the main problem occurs, and when the problem is solved. Use a three-column chart to organize details about Acts One, Two, and Three.

6. **Write an Extended Response** Describe how the three-act structure of the play develops the narrative. Be sure to discuss how the structure relates to the characters, the problem, and the solution of the problem.
Learning Target

In this lesson, you explained how acts, scenes, and stanzas work together to provide structure and meaning in a drama or poem. Explain how you can apply what you’ve learned to other dramas and poems you read.
Lesson 22
Solve Word Problems Involving Conversions

Prerequisite: Convert Measurement Units

Study the example problem showing how to convert between feet and yards. Then solve problems 1–13.

Example

How many feet are in \(7 \frac{1}{3}\) yards?

1 yard is equivalent to 3 feet.

\[
\begin{array}{c|c|c}
\text{yards (yd)} & 1 & \frac{1}{3} \\
\hline
\text{feet (ft)} & 3 & 1 \\
\end{array}
\]

To find how many feet are in \(7 \frac{1}{3}\) yards, multiply the number of yards by 3.

\[
7 \times 3 = 21 \\
\frac{1}{3} \times 3 = 1 \\
21 + 1 = 22
\]

There are 22 feet in \(7 \frac{1}{3}\) yards.

1 Which is the smaller unit of measurement, foot or yard? ______________

2 How many feet are in 5 yards? Explain how you calculated your answer.

3 Complete the table.

<table>
<thead>
<tr>
<th>yards (yd)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>feet (ft)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 How many yards are equivalent to 30 feet? Explain how you calculated your answer.
Solve.

5. Which is the larger unit of measurement, meter or centimeter? ________________

6. Look at problem 5. How did you know which unit of measurement was larger?

7. How many centimeters are in x meters?

8. Use your expression from problem 7. How many centimeters are in 2.7 meters?

9. Write an expression to show how many meters are equivalent to x centimeters. ________________

10. Use your expression from problem 9. How many meters are equivalent to 400 centimeters?

11. Complete the table.

<table>
<thead>
<tr>
<th>centimeters (cm)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>270</th>
<th></th>
<th></th>
<th>400</th>
<th>480</th>
</tr>
</thead>
<tbody>
<tr>
<td>meters (m)</td>
<td>1</td>
<td>1.5</td>
<td></td>
<td></td>
<td>3</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. How many meters are equivalent to 175 centimeters?

13. How many centimeters are in 2.37 meters?

1 meter $= 100$ centimeters.
Lesson 22

Convert Units Using Equations

Study the example problem showing how to solve a word problem by converting units. Then solve problems 1–5.

Example

Michael is planning a party for 30 people. He plans that each guest will drink 1 cup of juice. He has $2 \frac{1}{2}$ gallons of juice. Does he have enough juice for the party?

Michael multiplies $2 \frac{1}{2}$ by 16 to find the number of cups of juice he has.

$2 \frac{1}{2} \times 16 = (2 + \frac{1}{2}) \times 16$

$= 2 \times 16 + \frac{1}{2} \times 16$

$= 32 + 8$

$= 40$ There are 40 cups of juice.

$40 > 30$, so Michael has enough juice for the party.

1 Juanita has $1 \frac{1}{2}$ gallons of milk. How many cups of milk does she have? Explain how you know.

2 Benjamin has 3 gallons of punch. He adds another $\frac{1}{2}$ gallon of juice to the punch. How many gallons of punch does he have now? How many cups? Explain your reasoning.
Solve.

Units of Capacity

| 1 quart = 4 cups |

3. Ms. Monet, the art teacher at Giverny School, has 3 quarts of liquid glue and 24 empty glue bottles that each hold 1 cup. Does she have enough glue to fill all of the bottles? Explain.

Solution:

4. Ms. Monet gave 1 cup of red paint to each of her 20 students. How many quarts of red paint did she give out?

Show your work.

Solution:

5. Ms. Monet is combining 15 cups of green paint with 15 cups of white paint. She is pouring the paint mixture into empty quart bottles. How many quart bottles does she need? Explain.

Show your work.

Solution:
Study the example problem showing how to compare measurements in different units. Then solve problems 1–7.

Example

Ryan and Layla measured the length of their hermit crabs. Ryan measured his crab to be 34 millimeters. Layla measured her crab to be 2.8 centimeters. Who has the longer crab?

It is easier to compare measurements in the same units. You can compare in millimeters or centimeters.

To compare the crabs in millimeters, you have to convert the measurement of Layla’s crab into millimeters. To convert from centimeters to millimeters, use multiplication because centimeters are the larger measurement unit.

\[2.8 \text{ cm} \times 10 = 28 \text{ mm} \]
Layla’s crab is 28 mm long.

\[34 \text{ mm} > 28 \text{ mm} \]
Ryan has the longer crab.

1 Which is the smaller unit of measurement, centimeter or millimeter? ________________

2 In the example problem, multiplication was used to convert centimeters to millimeters. What operation would you use to convert millimeters to centimeters?

3 Look at the example problem. Ryan and Layla’s friend Jan also has a hermit crab. Jan measures her hermit crab to be 3.3 cm long.

a. Who has the longer crab, Jan or Layla? __________

b. Who has the longer crab, Jan or Ryan? __________

Show your work.
Solve.

4. Geno has two hamsters, Zippy and Popcorn. Zippy is 94 millimeters long, and Popcorn is 8.7 centimeters long. How much longer is Zippy in millimeters? Explain.

Show your work.

Solution: __
__
__

5. Carissa’s gerbil has a tail that is the same length as its body length. Its tail is 102 millimeters. How long is her gerbil in centimeters?

Show your work.

Solution: ___

6. Diego’s parakeet is 13 centimeters, 4 millimeters tall. How tall is his parakeet in millimeters?

Show your work.

Solution: ___

7. Amelia takes her two cats, Sparkle and Twinkle, to the vet. The vet says that Sparkle is 464 mm long and Twinkle is 46 cm long. Which of Amelia’s cats is longer? Explain.

__
__
__
__
Solve the problems.

1. Audrey’s dog is 40 inches tall. How tall is her dog in feet and inches?

 \[1 \text{ foot} = 12 \text{ inches}\]

 Show your work.

 Solution:

2. Denver is called the “Mile High City” because the city’s official elevation is 1 mile, or 5,280 feet, above sea level. What is Denver’s elevation in yards? Circle the letter of the correct answer.

 \[1 \text{ yard} = 3 \text{ feet}\]

 - A 15,840 yards
 - B 5,277 yards
 - C 1,760 yards
 - D 440 yards

 Katherine chose **A** as the correct answer. How did she get that answer?

Solve.

3 Mica is making a paste mixture for an art project. He mixes 8 cups of water with glue. If he wants to make a double batch, how many quarts of water does he need? How much water is that in gallons? Show your work.

\[
\text{Solution:} \quad \frac{8 \text{ cups}}{4 \text{ cups per quart}} \times 2 = 16 \text{ quarts}
\]

\[
\text{16 quarts} \times \frac{1 \text{ gallon}}{4 \text{ quarts}} = 4 \text{ gallons}
\]

4 Jake and Nico both measured their thumbs. Jake’s thumb is 55 millimeters long. Nico’s thumb is 5.7 centimeters long. Who has the longer thumb? Explain how you know.

\[
\text{There are 10 millimeters in 1 centimeter.}
\]

\[
\text{Jake’s thumb: } 55 \text{ millimeters} = 5.5 \text{ centimeters}
\]

\[
\text{Nico’s thumb: } 5.7 \text{ centimeters}
\]

\[
\text{Both thumbs are the same length.}
\]

5 Toby’s house is 25 feet high. How high is Toby’s house in yards and feet? Show your work.

\[
\text{There are 3 feet in 1 yard.}
\]

\[
25 \text{ feet} \times \frac{1 \text{ yard}}{3 \text{ feet}} = 8.33 \text{ yards}
\]

\[
25 \text{ feet} \times \frac{1 \text{ foot}}{1 \text{ foot}} = 25 \text{ feet}
\]

\[
\text{Solution:} \quad 8.33 \text{ yards and } 25 \text{ feet}
\]

6 Mica is making a paste mixture for an art project. He mixes 8 cups of water with glue. If he wants to make a double batch, how many quarts of water does he need? How much water is that in gallons? Show your work.

\[
\text{Solution:} \quad \frac{8 \text{ cups}}{4 \text{ cups per quart}} \times 2 = 16 \text{ quarts}
\]

\[
16 \text{ quarts} \times \frac{1 \text{ gallon}}{4 \text{ quarts}} = 4 \text{ gallons}
\]
The Percussion Family

The percussion family is the largest family in the orchestra. Percussion instruments include any instrument that makes a sound when it is hit, shaken, or scraped. It's not easy to be a percussionist because it takes a lot of practice to hit an instrument with the right amount of strength, in the right place and at the right time. Some percussion instruments are tuned and can sound different notes, like the xylophone, timpani or piano, and some are untuned with no definite pitch, like the bass drum, cymbals or castanets. Percussion instruments keep the rhythm, make special sounds and add excitement and color. Unlike most of the other players in the orchestra, a percussionist will usually play many different instruments in one piece of music. The most common percussion instruments in the orchestra include the timpani, xylophone, cymbals, triangle, snare drum, bass drum, tambourine, maracas, gongs, chimes, celesta, and piano.

The piano is a percussion instrument. You play it by hitting its 88 black and white keys with your fingers, which suggests it belongs in the percussion family. The piano has the largest range of any instrument in the orchestra. It is a tuned instrument, and you can play many notes at once using both your hands. Within the orchestra the piano usually supports the harmony, but it has another role as a solo instrument (an instrument that plays by itself), playing both melody and harmony.

Timpani look like big polished bowls or upside-down teakettles, which is why they're also called kettledrums. They are big copper pots with drumheads made of calfskin or plastic stretched over their tops. Timpani are tuned instruments, which means they can play different notes. The timpanist changes the pitch by stretching or loosening the drumheads, which are attached to a foot pedal. Timpani are a central part of the percussion family because they support rhythm, melody and harmony. Most orchestras have four timpani of different sizes and tuned to different pitches and they are usually played by one musician, who hits the drumheads with felt-tipped mallets or wooden sticks. The timpani player must have a very
good ear because he/she usually needs to change the pitches of the drums during performances.

The **xylophone** originally came from Africa and Asia, but has a Greek name that means "wood sound." The modern xylophone has wooden bars or keys arranged like the keys of the piano, which the player hits with a mallet. You can change the quality of the pitch by using different kinds of mallets (hard or soft), and by hitting the wooden bars in different ways. Attached to the bottom of the wooden bars are metal tubes called resonators, where the sound vibrates. This gives the xylophone its bright bell-like sound.

Cymbals are the biggest noisemakers of the orchestra. They are two large metal discs, usually made of spun bronze. Cymbals, which are untuned, come in a range of sizes, from quite small to very large. The larger the cymbal, the lower the sound they make. Cymbals can be used for drama and excitement, to accent the rhythm or create delicate sound effects. You can play the cymbals either by hitting one cymbal against the other, or you can use sticks, mallets or brushes to hit one or both cymbals.

The **snare drum** is a smallish drum made of wood or brass with drumheads made of calfskin or plastic stretched over both ends of a hollow cylinder. It has a set of wire-wrapped strings stretched across the bottom head (the snare), which give the snare drum its unique "rattling" sound when the drum is hit. A small switch on the side of the drum allows the player to turn the snare on or off depending on the requirements of the piece. The snare drum is an untuned drum, so it doesn't sound distinct pitches. It is often used in military music and is a central part of any marching band. Snare drums are used to keep the rhythm and make special sounds, such as drumrolls. You play the snare drum by hitting the top with drumsticks, mallets or brushes.
The **bass drum**, like the double bass, is the biggest member of the percussion family and therefore makes the lowest sounds. The bass drum is built like a very large snare drum, although without the snare; it is also an untuned instrument. You play the bass drum by hitting either drumhead with sticks that have large soft heads, often covered with sheepskin or felt. It can produce a lot of different sounds from roaring thunder to the softest whispers.

Castanets are made of two pieces of wood tied together. These fun wooden instruments come from Spain and are used to punctuate the music with a distinctive clickety-clack. To play them, you hold them with your fingers and click the two pieces of wood together. In the orchestra, castanets are sometimes mounted on a piece of wood, and the percussionist plays them by hitting them with his/her hands.
The Percussion Family

1. What is the name of the “sticks” you use to play the xylophone?

2. Does the piano belong to the percussion family? Why or why not?

3. Which instruments in the picture above have a metal sound?

4. Which instruments in the picture above have a wooden sound?

5. Which instruments in the picture above do you hold in your hands to play?

6. Which instruments in the picture above can play a melody?

7. Which instrument in the picture above is your favorite? Why?

Draw a line to match the percussion instruments with their name.

What Am I?

I am an instrument that you scrape......What Am I? ____________________________

Please be sure to hold me correctly so that I can vibrate....What Am I? ______________________

I come in pairs of two and you shake me....What Am I? ________________________________

I am played with your fingers and have a metal sound...What Am I? __________________________

I am made of wood and my name describes the shape I am.....What Am I? ________________________
Converting Units Vocabulary Match

What You Need
- Recording Sheet

What You Do
1. Pick a word on the Recording Sheet.

2. Say the word and describe an example.

3. Your partner tells a non-example for the word and explains why it is a non-example.

4. Draw a line to the definition.

5. Take turns until all the words have been used.

Check Understanding
Tell the relationship between meters and centimeters. Use the words metric system, operation, measurement unit, and equivalent in your answer.

I can convert from feet to inches.

4 feet × 12 inches per foot = 48 inches

The following is a non-example:

Multiply 4 feet by 12.
4 feet × 12 = 48 feet

The unit feet does not change. I am not converting.

Go Further!
Write two sentences telling why you multiply by 1,000 to change 4 meters to millimeters. Use at least three words from the Recording Sheet.
Converting Units Vocabulary Match

<table>
<thead>
<tr>
<th>Math Words</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>centimeter</td>
<td>a name that tells how a quantity is measured; for example, a quantity can be measured in cups</td>
</tr>
<tr>
<td>convert</td>
<td>a mathematical process like addition, subtraction, multiplication, or division that produces a new value</td>
</tr>
<tr>
<td>customary system</td>
<td>a measurement system that measures length based on meters, capacity based on liters, and mass based on grams</td>
</tr>
<tr>
<td>equivalent measure</td>
<td>the basic unit of length in the metric system</td>
</tr>
<tr>
<td>measurement unit</td>
<td>in the metric system, the type of number used to change from one unit to another</td>
</tr>
<tr>
<td>meter</td>
<td>a measurement system that measures length in inches, feet, yards, and miles; capacity in cups, quarts, pints, and gallons; and weight in ounces and pounds</td>
</tr>
<tr>
<td>metric system</td>
<td>a measure equal to one hundredth of a meter</td>
</tr>
<tr>
<td>millimeter</td>
<td>a measure equal to one thousandth of a meter</td>
</tr>
<tr>
<td>operation</td>
<td>to change one unit of measurement to another larger or smaller unit that represents the same quantity</td>
</tr>
<tr>
<td>power of ten</td>
<td>a measure that represents the same quantity as another measure</td>
</tr>
</tbody>
</table>
Go Further!

Convert 5 centimeters to millimeters.
Convert 0.25 mile to feet.
Show your work. Tell your partner how you found the answers.

What You Need
- Recording Sheet

What You Do
1. Choose any measurement on the Recording Sheet.
2. Identify the equivalent measure. Some of the answer choices will not be used.
3. Explain your reasoning to your partner.
4. If your partner agrees, write the answer on the Recording Sheet and score 1 point. If you are incorrect, your turn ends.
5. Continue until all the problems have been completed. The partner with the most points wins.

Check Understanding
Convert 60 meters to kilometers and then to millimeters. Show your work. Explain the difference in the two conversions.

When I convert from a larger unit to a smaller unit, I need more units.
When I convert from a smaller unit to a larger unit, I need fewer units.
Measurement Match

Customary Measures

<table>
<thead>
<tr>
<th>4 cups</th>
<th>24 ounces</th>
<th>5 yards</th>
<th>90 feet</th>
<th>3 quarts</th>
<th>0.5 pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cups</td>
<td>32 ounces</td>
<td>7 yards</td>
<td>2,640 feet</td>
<td>20 quarts</td>
<td>1.5 pounds</td>
</tr>
</tbody>
</table>

Partner A

8 ounces = _________ pound(s)

4 quarts = _________ cups

21 feet = _________ yards

0.5 mile = _________ feet

Partner B

30 yards = _________ feet

2 pints = _________ cups

180 inches = _________ yards

2 pounds = _________ ounces

Metric Measures

<table>
<thead>
<tr>
<th>65,000</th>
<th>50,000</th>
<th>16,000</th>
<th>3,500</th>
<th>3,200</th>
<th>25</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>0.85</td>
<td>0.35</td>
<td>0.25</td>
<td>0.12</td>
<td>0.32</td>
<td>6,500</td>
</tr>
</tbody>
</table>

Partner A

16 kilometers = _________ meter(s)

350 grams = _________ kilogram(s)

2,500 centimeters = _________ meter(s)

1,200 milliliters = _________ liter(s)

Partner B

32 meters = _________ centimeter(s)

850 milliliters = _________ liter(s)

65 kilograms = _________ gram(s)

50 meters = _________ millimeter(s)
Alphabet Fitness

A - 20 Jumping Jacks
B - 20 Crunches
C - 10 Squats
D - 10 Pushups
E - 20 Mountain Climbers
F - 10 Burpees
G - 10 Arm Circles
H - 15 Squats
I - 5 Push-ups
J - 20 High Knees
K - 10 Push-ups
L - 10 Walking Lunges
M - 5 Burpees
N - 20 Second Plank
O - 20 Jumping Jacks
P - 10 Arm Circles
Q - 15 Crunches
R - 5 Pushups
S - 15 Mountain Climbers
T - 20 High Knees
U - 15 Squats
V - 10 Burpees
W - 30 Jumping Jacks
X - 15 Crunches
Y - 20 Jumping Jacks
Z - 20 Plank Shoulder Taps