GSE Algebra II Curriculum Map

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1 (4 – 5 weeks)</td>
<td>Unit 2 (3 – 4 weeks)</td>
</tr>
<tr>
<td>Quadratics Revisited</td>
<td>Operations With Polynomials</td>
</tr>
</tbody>
</table>

These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units.

All units will include the Mathematical Practices and indicate skills to maintain.

Prioritized Standards are noted in RED

NOTE: Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics.

Grade 9-12 Key:
- **Number and Quantity Strand:** RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities
- **Algebra Strand:** SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations, REI = Reasoning with Equations and Inequalities
- **Functions Strand:** IF = Interpreting Functions, LE = Linear and Exponential Models, BF = Building Functions, TF = Trigonometric Functions
- **Geometry Strand:** CO = Congruence, SRT = Similarity, Right Triangles, and Trigonometry, C = Circles, GPE = Expressing Geometric Properties with Equations, GMD = Geometric Measurement and Dimension, MG = Modeling with Geometry
- **Statistics and Probability Strand:** ID = Interpreting Categorical and Quantitative Data, IC = Making Inferences and Justifying Conclusions, CP = Conditional Probability and the Rules of Probability, MD = Using Probability to Make Decisions
Georgia Department of Education

Georgia Standards of Excellence Algebra II/Advanced Algebra
Curriculum Map Rationale

Unit 1: Students will revisit solving quadratic equations in this unit. Students explore relationships between number systems: whole numbers, integers, rational numbers, real numbers, and complex numbers. Students will perform operations with complex numbers and solve quadratic equations with complex solutions. Students will also extend the laws of exponents to rational exponents and use those properties to evaluate and simplify expressions containing rational exponents.

Unit 2: This unit develops the structural similarities between the system of polynomials and the system of integers. Students draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Students connect multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students will find inverse functions and verify by composition that one function is the inverse of another function.

Unit 3: In this unit, students continue their study of polynomials by identifying zeros and making connections between zeros of a polynomial and solutions of a polynomial equation. Students will see how the Fundamental Theorem of Algebra can be used to determine the number of solutions of a polynomial equation and will find all the roots of those equations. Students will graph polynomial functions and interpret the key characteristics of the function.

Unit 4: Rational numbers extend the arithmetic of integers by allowing division by all numbers except 0. Similarly, rational expressions extend the arithmetic of polynomials by allowing division by all polynomials except the zero polynomial. A central theme of this unit is that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers. Similarly, radical expressions follow the rules governed by irrational numbers.

Unit 5: Students extend their work with exponential functions to include solving exponential equations with logarithms. They analyze the relationship between these two functions.

Unit 6: In this unit students synthesize and generalize what they have learned about a variety of function families. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying functions. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. They determine whether it is best to model with multiple functions creating a piecewise function. Students will also explore the sum of finite geometric series.

Unit 7: In this unit, students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting data— including sample surveys, experiments, and simulations—and the role that randomness and careful design play in the conclusions that can be drawn.

The pacing suggested on the curriculum map will allow students to gain a foundation in quadratics, polynomials, rational functions, radical functions, exponential functions, and logarithms before they begin the Mathematical Modeling unit. The Mathematical Modeling unit will bring these functions together and will introduce the sum of finite geometric series and piecewise functions. Students will have an opportunity to revisit many of these functions while working the tasks in unit 6. The course closes with the final unit discussing data and probability distributions.
Georgia Department of Education

GSE Algebra II/Advanced Algebra Expanded Curriculum Map – 1st Semester

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

1st Semester

<table>
<thead>
<tr>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadratics Revisited</td>
<td>Operations With Polynomials</td>
<td>Polynomial Functions</td>
<td>Rational & Radical Relationships</td>
</tr>
<tr>
<td>Perform arithmetic operations with complex numbers.</td>
<td>Perform arithmetic operations on polynomials</td>
<td>MGSE-9.N.CN.9 Use the Fundamental Theorem of Algebra to find all roots of a polynomial equation</td>
<td>Rewrite rational expressions</td>
</tr>
<tr>
<td>MGSE-9.N.CN.1 Understand there is a complex number i such that $i^2 = -1$, and every complex number has the form $a + bi$ where a and b are real numbers.</td>
<td>MGSE-9.N.CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.</td>
<td>Interpret the structure of expressions</td>
<td>MGSE-9.A.APR.7 Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.</td>
</tr>
<tr>
<td>MGSE-9.N.CN.3 Find the conjugate of a complex number; use the conjugate to find the absolute value (modulus) and quotient of complex numbers.</td>
<td>Use complex numbers in polynomial identities and equations.</td>
<td>MGSE-9.A.SSE.1 Interpret expressions that represent a quantity in terms of its context.</td>
<td>Create equations that describe numbers or relationships</td>
</tr>
<tr>
<td>MGSE-9.N.CN.7 Solve quadratic equations with real coefficients that have complex solutions by (but not limited to) square roots, completing the square, and the quadratic formula.</td>
<td>Solve equations and inequalities in one variable.</td>
<td>MGSE-9.A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients, in context.</td>
<td>Create equations with two or more variables</td>
</tr>
<tr>
<td>For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.</td>
<td>MGSE-9.N.CN.8 Extend polynomial identities to include factoring with complex numbers.</td>
<td>MGSE-9.A.SSE.1b Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors.</td>
<td>Use linear, quadratic, and exponential functions (integer inputs only)</td>
</tr>
<tr>
<td>MGSE-9.A.REL.4 Solve quadratic equations in one variable.</td>
<td>MGSE-9.N.CN.9 Understand solving equations as a process of reasoning and explain the reasoning.</td>
<td>MGSE-9.A.SSE.2 Use the structure of an expression to rewrite it in different equivalent forms. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 + y^2)(x^2 - y^2)$.</td>
<td>MGSE-9.A.CED.2 Create linear, quadratic, and exponential equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.</td>
</tr>
<tr>
<td>MGSE-9.A.REL.4b Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation (limit to real number solutions).</td>
<td>MGSE-9.A.REL.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.</td>
<td>Interpret these zeros.</td>
<td>(Limit to rational and radical functions. The phrase “in two or more variables” refers to formulas like the compound interest formula, in which $A = P(1 + r/n)^nt$ has multiple variables.)</td>
</tr>
<tr>
<td>Extend the properties of exponents to rational exponents.</td>
<td>MGSE-9.A.REL.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.</td>
<td>MGSE-9.A.APR.2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.</td>
<td>MGSE-9.A.CED.3 Use polynomial identities to solve problems</td>
</tr>
<tr>
<td>MGSE-9.A.APR.4 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.</td>
<td>MGSE-9.A.APR.3 Use polynomial identities to solve problems.</td>
<td>For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.</td>
<td>MGSE-9.A.APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.</td>
</tr>
</tbody>
</table>

Richard Woods, State School Superintendent
July 2016 • Page 3 of 6
All Rights Reserved
Georgia Department of Education

<table>
<thead>
<tr>
<th>MGSE9-12.N.RN.1 Explain how the meaning of rational exponents follows from extending the properties of integer exponents to rational numbers, allowing for a notation for radicals in terms of rational exponents.</th>
<th>Build new functions from existing functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGSE9-12.F.BF.4 Find inverse functions. MGSE9-12.F.BF.4a Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) = 2(x^3) or f(x) = (x+1)/(x-1) for x ≠ 1. MGSE9-12.F.BF.4b Verify by composition that one function is the inverse of another. MGSE9-12.F.BF.4c Read values of an inverse function from a graph or a table, given that the function has an inverse.</td>
<td>Interpret functions that arise in applications in terms of the context</td>
</tr>
<tr>
<td>MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Analyze functions using different representations</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology. MGSE9-12.F.IF.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.</td>
<td>symmetries; end behavior; and periodicity. Interpret functions that arise in applications in terms of the context</td>
</tr>
<tr>
<td>MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. Analyze functions using different representations</td>
<td></td>
</tr>
</tbody>
</table>
| MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology. MGSE9-12.F.IF.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. MGSE9-12.F.IF.7d Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. | }

Richard Woods, State School Superintendent
July 2016 ● Page 4 of 6
All Rights Reserved
Exponential & Logarithms

<table>
<thead>
<tr>
<th>Unit 5</th>
<th>Mathematical Modeling</th>
<th>Unit 6</th>
<th>Inferences & Conclusions from Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write expressions in equivalent forms to solve problems
MGSE9-12.A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.</td>
<td>Write expressions in equivalent forms to solve problems
MGSE9-12.A.SSE.4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.</td>
<td>Summarize, represent, and interpret data on a single count or measurement variable
MGSE9-12.S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, mean absolute deviation, standard deviation) of two or more different data sets.</td>
<td></td>
</tr>
<tr>
<td>Analyze functions using different representations
MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.</td>
<td>Analyze functions using different representations
MGSE9-12.F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.</td>
<td>MGSE9-12.S.ID.3 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, mean absolute deviation, standard deviation) of two or more different data sets.</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t, where t is in years, can be rewritten as $(1.15^{(1/12)})^{12t} = 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.</td>
<td>Build new functions from existing functions
MGSE9-12.F.BF.5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.</td>
<td>MGSE9-12.S.ID.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.A.SSE.7 Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.</td>
<td>Construct and compare linear, quadratic, and exponential models and solve problems
MGSE9-12.F.IF.4 For exponential models, express as a logarithm the solution to $ab^{(x)} = d$ where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.</td>
<td>MGSE9-12.S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.A.SSE.8b Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (1.01)(1.01)^t$, $y = (1.2)^{(.01t)}$, and classify them as representing exponential growth or decay.</td>
<td>Construct and compare linear, quadratic, and exponential models and solve problems
MGSE9-12.F.IF.5 Create linear, quadratic, and exponential models in situations where the relationship is not explicitly given; test these models by graphing or table features, for goodness of fit. Review the context and evaluate the reasons for any discrepancy between the model and the situation it represents.</td>
<td>MGSE9-12.S.IC.6 Evaluate reports based on data. For example, determining quantitative or categorical data; collection methods; biases or flaws in data.</td>
<td></td>
</tr>
<tr>
<td>Build new functions from existing functions
MGSE9-12.F.BF.8 Write a function that models a relationship between two quantities. For example, graph a function expressing the relationship between pay P(t) and time t for a person paying off a credit card balance at a constant rate r.</td>
<td>Represent and solve equations and inequalities graphically
MGSE9-12.A.REI.11 Using graphs, tables, or successive approximations, show that the solution to the equation $f(x) = g(x)$ is the x-value where the y-values of $f(x)$ and $g(x)$ are the same.</td>
<td>MGSE9-12.S.IC.7 Interpret statements of correlation and causation.</td>
<td></td>
</tr>
<tr>
<td>Summarize, represent, and interpret data on a single count or measurement variable
MGSE9-12.S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, mean absolute deviation, standard deviation) of two or more different data sets.**</td>
<td>MGSE9-12.A.REI.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.</td>
<td>MGSE9-12.S.IC.8 Create or use models to simulate decision situations.</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.S.ID.3 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, mean absolute deviation, standard deviation) of two or more different data sets.</td>
<td>MGSE9-12.A.REI.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, compare the growth of $y = (1.03)^x$ and $y = 1.02(1.01)^x$.</td>
<td>MGSE9-12.S.IC.9 Identify limitations of survey results and simulation models.</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.S.ID.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.</td>
<td>MGSE9-12.A.REI.7 Solve equations and inequalities graphically. For example, graph the equations $y = x^2$ and $y = x + 2$ to find their solution approximately. Verify the solution numerically, using graphs or tables.</td>
<td>MGSE9-12.S.IC.10 Understand and critique research reports and simulations in various contexts.</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.S.ID.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.</td>
<td>MGSE9-12.A.REI.8 Represent and solve simple one-variable equations and inequalities. For example, represent and solve the equation $3(x-2) = 9$ and the inequality $10 - g > 7$ graphically, recognizing that the solution to the corresponding equation is a solution to the inequality.</td>
<td>MGSE9-12.S.IC.11 Review and evaluate research reports and simulation models.</td>
<td></td>
</tr>
<tr>
<td>MGSE9-12.S.ID.6 Evaluate reports based on data. For example, determining quantitative or categorical data; collection methods; biases or flaws in data.</td>
<td>MGSE9-12.A.REI.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, compare the growth of $y = (1.03)^x$ and $y = 1.02(1.01)^x$.</td>
<td>MGSE9-12.S.IC.12 Understand and critique research reports and simulations in various contexts.</td>
<td></td>
</tr>
</tbody>
</table>

Resources

- [Georgia Department of Education](http://www.georgiadepartmentofeducation.org)
- [Standards for Mathematical Practice](http://www.corestandards.org)
- [Inferences & Conclusions from Data](http://www.inferencesandconclusionsfromdata.org)
- [Mathematical Modeling](http://www.mathematicalmodeling.org)

Richard Woods, State School Superintendent

July 2016 • Page 5 of 6

All Rights Reserved
given a graph of one function and an algebraic expression for another, say which has the larger maximum.

Build new functions from existing functions

MGSE9-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.