ABOUT US

COOPERATIVE STRATEGIES, LLC

>25 years experience

>30 service lines

>2,000 School Districts

>15 Billion in Bonds

48 States & D.C. Experience

>300 Educational Specifications

>300 Facilities Master Plans

Backgrounds:
Education, technology, facilitation, and management

DAVID STURTZ
Partner
614.798.8828
dsturtz@coopstrategies.com

KERRIANNE WOLF
Director, Ed. Specs.
614.798.8828
kwolf@coopstrategies.com
TODAY’S AGENDA

✓ TIMELINE, OVERVIEW, INTRODUCTION

✓ REVIEW: Planning Lab #1 & Business Advisory Meeting

✓ SMALL GROUP DISCUSSION TOPIC #1: In your opinion, Define what would be a Successful Fulton County STEM High School.

✓ SMALL GROUP DISCUSSION TOPIC #2: What modifications to the proposed plan might you suggest? What other academic or facility factors should be considered as the plan nears completion?

✓ Questions & Answers
INTRODUCTION
WHAT IS AN EDUCATIONAL SPECIFICATION?

Written communication from the owner or educator to design professionals, particularly the architect, describing the current and future educational activities that the school facility should accommodate.
CURRENT PROJECT
DRAFT C.O.S.

Target GSF
Approximately
~225,000

Target capacity
~1,500 students

~150 gsf/student
DELIIVERABLES

Space Types, Quantities, Sizes & Descriptions

Purpose, Users, Activities

Descriptions of Aesthetics, Safety & Security, Sustainability and other key design considerations

Spatial Relationships, Illustrations, and Adjacencies

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Suggested Teaching Stations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Program Spaces (Offices, Lockers, Gallery)</td>
<td>1</td>
<td>7,800</td>
</tr>
<tr>
<td>Animation</td>
<td>1</td>
<td>1,900</td>
</tr>
<tr>
<td>Architecture Design (AutoCAD, Revit, BIM)</td>
<td>1</td>
<td>2,400</td>
</tr>
<tr>
<td>Automotive</td>
<td>2</td>
<td>7,300</td>
</tr>
<tr>
<td>Broadcasting</td>
<td>2</td>
<td>6,975</td>
</tr>
<tr>
<td>Business, Marketing, Entrepreneurship</td>
<td>2</td>
<td>5,500</td>
</tr>
<tr>
<td>CNC Precision Metal Manufacturing & Robotics</td>
<td>1</td>
<td>2,400</td>
</tr>
<tr>
<td>Construction & Building Maintenance</td>
<td>1</td>
<td>3,500</td>
</tr>
<tr>
<td>Cosmetology</td>
<td>4</td>
<td>9,450</td>
</tr>
<tr>
<td>Culinary Arts</td>
<td>2</td>
<td>7,000</td>
</tr>
<tr>
<td>Engineering / Robotics</td>
<td>2</td>
<td>3,500</td>
</tr>
<tr>
<td>Fire Academy</td>
<td>2</td>
<td>5,250</td>
</tr>
<tr>
<td>Graphic Design & Commercial Arts</td>
<td>1</td>
<td>1,475</td>
</tr>
<tr>
<td>Health Sciences</td>
<td>9</td>
<td>15,450</td>
</tr>
<tr>
<td>Horticulture & Floral Design</td>
<td>1</td>
<td>1,650</td>
</tr>
<tr>
<td>Law Enforcement</td>
<td>2</td>
<td>4,700</td>
</tr>
<tr>
<td>Photography</td>
<td>1</td>
<td>1,475</td>
</tr>
<tr>
<td>Technology & Computer Maintenance</td>
<td>1</td>
<td>1,750</td>
</tr>
<tr>
<td>Welding</td>
<td>2</td>
<td>6,300</td>
</tr>
<tr>
<td>Administration: CTE Department</td>
<td>1</td>
<td>2,200</td>
</tr>
<tr>
<td>Administration: Campus</td>
<td>1</td>
<td>2,430</td>
</tr>
<tr>
<td>Other Administration Space</td>
<td>1</td>
<td>2,530</td>
</tr>
<tr>
<td>Common Areas</td>
<td>1</td>
<td>4,550</td>
</tr>
<tr>
<td>Data Center</td>
<td>1</td>
<td>13,350</td>
</tr>
<tr>
<td>Loading Dock</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Sub Total Programmed Areas</td>
<td></td>
<td>121,635</td>
</tr>
<tr>
<td>Building Services, Circulation, Restrooms, etc.</td>
<td>35%</td>
<td>43,372</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>164,207</td>
</tr>
<tr>
<td>ADD ALTERNATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>Fire Academy Tower</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
DELIVERABLES

- Architectural renderings
- Adjacency Diagrams
- “Loud & Smelly”
- Digital tech
- Culinary
- Customer service facing

Arlington ISD CTE Center
Ed Spec with VLK Architects
EDUCATIONAL SPECIFICATIONS

PROCESS

TIMELINE

Curriculum Leaders Interviews
Feb 14

Business Advisory Council
Mar 7

Planning Lab 1
Mar 16 & 17

Community Meeting
Mar 28

Planning Lab 2
Mar 29

Final Board Presentation
Apr 13
EDUCATIONAL SPECIFICATIONS

PROCESS

Feb 14
Curriculum Leaders Interviews
✓ Vision of curriculum delivery and spaces to support

Mar 7
Business Advisory Meeting
✓ Reviewed Vision & Objectives, Discussed Programs, Delivery, & Spaces

Lab 1
Mar 16 & 17
Visioning
✓ Defining the model
✓ Defining roles
✓ Defining space & time

COS
✓ Based on teacher interviews
✓ “Disney World Budget”

Layouts
✓ Benefits/Challenges of adjacency models

Mar 28
Community Meeting
✓ Update on Process, Define Success, Suggested Modifications

Lab 2
Mar 29
COS
✓ Additional input

Adjacency
✓ Model program and site using COS & preferred adjacency model(s)

Requirements
✓ Furniture, Fixtures, Equipment (FFE)
CURRICULUM LEADERS INTERVIEWS

FEBRUARY 14

• Directors:
 • Capital Planning
 • Humanities, ELA & SS
 • Junior ROTC
 • Learning & Teaching

• Coordinators:
 • Health & Physical Education
 • Performing Arts
 • Virtual Learning

• Program Specialists:
 • CTAE
 • Instructional Technology / Personalized Learning
 • Media Services
 • Virtual Learning
 • World Languages
 • Advanced Studies (IB, AP, AVID, Magnets, Etc.)
 • Asst. Supt., Learning & Teaching
 • CTE Analyst/Support Specialist (EMT)
 • Executive Director of CTAE
 • Instructional technology / digital content
 • STEM Director, Mathematics
 • Visual Art, Media Arts, Dance and Theatre
 • Work-Based Learning Administrator
Fulton County Schools
- Yalanda Bell
- Patrick Burke
- Doug Carey
- Melanie Conley
- Ashley Garrison
- Annette Higgins
- David Knotts

Business Advisors:
Healthcare
- Well Star Health System
- Northside Hospital
- Georgia Hospital Association
- Emory Healthcare
- McKesson

IT, Engineering & Manufacturing
- Hire Dynamics
- Alpharetta Technical Community College
- Gwinnett Tech
- GNFCC
- Cisco
BUSINESS ADVISORY MEETING

HIGHLIGHTS

- Soft skills - communication & presentation
- Keep updated: program, facility, & FFE
- Attract students District wide
- Coordinate schedules: school day, school year, summer, etc.
- Common definitions of: apprenticeship, internship, externship, experiential learning, etc.
- Healthcare as business
- Healthcare intersect with other CTE clusters to provide cross-curricular instruction such as healthcare administration, finance, IT, and telehealth
- "Healthcare Peer Acceptance" Project: Healthcare vs. sick care, year-long & school wide
- Provide space for:
 - Robotics competitions – exterior fields
 - Presentations
 - Simulated healthcare settings – clinical rooms
 - Telepresence/conference
 - Huddle rooms
 - Industry sponsorship
 - Video & film studio
PLANNING LAB #1
MARCH 16 & 17

Rob Anderson Ashley Garrison Tim Maley
Tessa Barbazon Lizann Gibson Jamie Patterson
Amy Barger Tasha Guadalupe Keena Ryals-Jenkins
Donna Barrett-Williams Susan Hale Ed Spurka
Yalanda Bell Scott Hanson Rachael Stowall
Partrick Burke April Hardy Steve Sweigart
Cherisse Campbell Annette Higgins Caroline Truax
Doug Carey Kelly Hopkins Rebecca Tyson
Joseph Clements Ehab Jaleel Heather Van Looy
Melanie Conley Mark Jensen Ron Wade
Kibbey Crumbley Sandra Jewell Michelle Wilson
Tim Dunn Bob Just Hoke Wilcox
Michelle Easley Scott Kent Brittany Wilson
Mark Elsey David Knotts Michelle Young
Betsy Eppes Oscar Lee Jimmy Zoll
Rick Gaddy Andrea Little
PLANNING LAB #2
DRAFT AGENDA: MARCH 29

8:00 am to 4:30 pm

✓ REVIEW: Planning Lab #1 & Community Meeting Highlights

✓ Review Compilation of Space & Value Engineering Exercise

✓ Draft Program Area Illustrations & Overall Ideal Facility Adjacencies

✓ Review Program Area Descriptions

✓ Compose Program Area Narratives

PLANNING LAB #1
MARCH 16 & 17

PLANNING LAB #1
HIGHLIGHTS
VISION & OBJECTIVE CONFIRMATION

VISION:
The STEM Focused Campus (Alpharetta) is a high school dedicated to providing rigorous and relevant instruction with focused interest in Science, Technology, Engineering, and Math that will prepare students for college and career readiness through academics, career-related courses, internships, and industry certifications.

OBJECTIVE #1:
To provide students with unique and authentic instructional experiences in STEM fields; specifically, in the areas of healthcare science, engineering/manufacturing, and information technology.

OBJECTIVE #2:
To build strategic partnerships between Fulton County Schools and the business community that will provide industry experiences and internship opportunities for students.

OBJECTIVE #3:
To provide students with multiple industry certification opportunities that will prepare them to be college and career ready.

BASED ON YOUR EXPERIENCE, WHAT OPPORTUNITIES AND CHALLENGES DOES THE DISTRICT NEED TO CONSIDER TO FULFILL THESE OBJECTIVES?
FOCUS QUESTIONS
FOR VISION & OBJECTIVE CONFIRMATION

What do you envision for students as a result of their education at North STEM High School?

What do we want our students to be able to do when they graduate to succeed and thrive in a career & technical field?

How do we prepare students for college and a career in a technical field?
Clusters/Pathways/Courses

<table>
<thead>
<tr>
<th>Healthcare Science</th>
<th>Information Technology</th>
<th>Engineering and Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnology Research and Development</td>
<td>Computer Science</td>
<td>Energy Systems</td>
</tr>
<tr>
<td>- Introduction to Healthcare Science</td>
<td>- Introduction to Digital Technology</td>
<td>- Foundations of Energy Technologies</td>
</tr>
<tr>
<td>- Essentials of Biotechnology</td>
<td>- Computer Science Principles or AP Computer Science Principles</td>
<td>- Energy and Power Technology</td>
</tr>
<tr>
<td>- Applications of Biotechnology</td>
<td>- AP Computer Science</td>
<td>- Appropriate and Alternative Energy Technologies</td>
</tr>
<tr>
<td>Therapeutic Services/ Patient Care</td>
<td>Game Design</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>- Introduction to Healthcare Science</td>
<td>- Introduction to Digital Technology</td>
<td>- Foundations of Manufacturing and Materials Science</td>
</tr>
<tr>
<td>- Essentials of Healthcare</td>
<td>- Computer Science Principles or AP Computer Science Principles</td>
<td>- Robotics and Automated Systems</td>
</tr>
<tr>
<td>- Patient Care Fundamentals</td>
<td>- Game Design: Animation and Simulation</td>
<td>- Production Enterprises</td>
</tr>
<tr>
<td>Therapeutic Services/ Emergency Medical Responder</td>
<td>Cybersecurity</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>- Introduction to Healthcare Science</td>
<td>- Introduction to Digital Technology</td>
<td>- Introduction to Mechatronics - DC Theory, Pneumatic Systems, and Programmable Logic Controllers</td>
</tr>
<tr>
<td>- Essentials of Healthcare</td>
<td>- Introduction to Cybersecurity</td>
<td>- AC Theory, Electric Motors, and Hydraulic Systems</td>
</tr>
<tr>
<td>- Emergency Medical Responder</td>
<td>- Advanced Cybersecurity</td>
<td>- Semiconductors, Mechanical Systems, and Pump and Piping Systems</td>
</tr>
<tr>
<td>Therapeutic Services/ Surgical Technology</td>
<td>Internet of Things</td>
<td>Engineering and Technology</td>
</tr>
<tr>
<td>- Introduction to Healthcare Science</td>
<td>- Introduction to Digital Technology</td>
<td>- Foundations of Engineering and Technology</td>
</tr>
<tr>
<td>- Essentials of Healthcare</td>
<td>- Computer Science Principles or AP Computer Science Principles</td>
<td>- Engineering Concepts</td>
</tr>
<tr>
<td>- Surgical Technician</td>
<td>- Embedded Computing</td>
<td>- Engineering Applications</td>
</tr>
<tr>
<td>Health Informatics/ Health Information Technology</td>
<td>Networking</td>
<td></td>
</tr>
<tr>
<td>- Introduction to Healthcare Science</td>
<td>- Introduction to Digital Technology</td>
<td></td>
</tr>
<tr>
<td>- Essentials of Health Information Technology</td>
<td>- Networking Fundamentals</td>
<td></td>
</tr>
<tr>
<td>- Applications of Health Information Technology</td>
<td>- Networking Systems and Support</td>
<td></td>
</tr>
</tbody>
</table>
PERSONALIZED LEARNING MODELS

HOW MODELS THINK ABOUT SCHOOL STRUCTURES DIFFERENTLY

Facilities
Offline/Online Content
Schedule
Class Size & Student Grouping
Teacher Roles & Expectations
Use of Instructional Time
Facilities
- Does our model focus on within classroom structures or across classroom structures?
- How are we using our media center or other large spaces differently?
- Are we using computer labs?
- How will use of facilities differ by grade or subject area?

Offline/Online Content
- What is our major source for offline content? E.g. district-provided, teacher created, or other? Specify by grade and subject area.
- What digital content will we use? Specify by grade and subject area.
- What digital tools will we use? Specific purpose of digital tools, e.g. for collaboration or creation, formative assessment, storing or deploying content.
- In the absence of digital content in certain grades and subjects, how might students use devices to access teacher-created content, conduct research, or create products to demonstrate mastery?

Schedule
- How long are our instructional blocks?
- Will we have block schedule?
- Does our schedule include specific instructional times for some/all students, e.g. intervention block or Genius Hour?
- How often will our teachers have collaborative planning time?
Questions to Answer: How Our Models Think about School Structures Differently

Class Size & Student Grouping

• Will we think about class sizes differently?
• How many student groups does our instructional block include? Two, Three, Four, flexible?
• Are students grouped within classrooms or across classroom? Across grade levels?
• Are students grouped differently for cross-curricular activities?
• What data will teachers use to group students?
• How often will teachers be expected to regroup students?

Teacher Roles & Expectations

• How are we thinking about teacher roles differently? Will we have co-teaching? Will we ask teachers to specify in a certain instructional focus area?
• What “behind the scenes” work will we ask teachers to do on a weekly basis to support our instructional model? E.g. give formative assessment on Monday to regroup for week.
• How will teacher roles and expectations differ by grade or subject area?

Use of Instructional Time

• What is the breakdown of time in our instructional block?
• Will our use of instructional time remain consistent across a week/unit, or will there be flexibility? What does this look like?
• How will our use of instructional time differ by grade or subject area?
HOW MODELS INCORPORATE PERSONALIZED LEARNING

WHAT ARE THE FACILITY IMPLICATIONS FOR ADOPTING THESE PERSONALIZED LEARNING STRATEGIES?

Choice and Voice

Flexible Pacing

Choice for Demonstrating Learning

Just-in-time Direct Instruction

Co-Planning Learning

Mastery-Based Assessments

Varied Strategies
Small Group Exercise

Ken Robinson argues that our model of education is “modeled on the interests of industrialization, and in the image of it.”

If the industrial model is not the appropriate model for our school operations today, what is an appropriate model? The answer(s) will inform how this facility is programmed.

Source: Ken Robinson’s “Changing Educational Paradigms”
DECONSTRUCTING THE INDUSTRIAL MODEL

ALTERNATIVES TO THE INDUSTRIAL MODEL

- Business office setting
- Alternative scheduling ideas, college for example
- Mastery demonstration
- Teachers are “guide on the side”
- Hands-on instruction
- Lab settings
- No “cells & bells”
- Personalized learning
- Synergy between career fields and areas of expertise
- Teachers & departments working together

Source: Ken Robinson’s “Changing Educational Paradigms”
ROLE OF THE TEACHER

Exercise

- Share a story of the most impactful class you have experienced as a teacher or a student
 - Small group work – create a common themes list on your flipchart

- Write keywords that define the role of the teacher in the examples you provided
 - Large group – compare, summarize common themes

Source: Derek Muller, Veritasium, “This will revolutionize education”
ROLE OF THE TEACHER

- Interpersonal & soft skills emphasized instead of “content” deliverer
- Encourager
- Authenticity
- Empowering
- High expectations
- Inviting
- Motivating
- Passionate
- Relatable

Source: Derek Muller, Veritasium, “This will revolutionize education”
Small Group Exercise

- Business Advisors: Peer Acceptance Health Care Project
- Using the model concept your table made in the first exercise, describe how the Peer Acceptance Health Care Project of the business advisors could be taught across all curriculum (“day in the life” of a student)
- Describe the types of spaces and equipment you would want to implement this project
Multi-year project
Business representatives consult on projects
Daylong access to food options
Health care vs sick care
Student driven time
Mobility (facility & furnishings & equipment)
Flexibility (time, teachers & students)
THE THIRD TEACHER
DEFINING AN IDEAL STEM HS

✓ Describe your dream program based on planning lab discussions thus far
✓ Create a list of the space types/rooms you would want to support that program
✓ Draw or list which space types/rooms should be close to each other
THE THIRD TEACHER
DEFINING AN IDEAL STEM HS

• Breakout spaces
• Student Center “Touchdown” space
• Huddle spaces
• Fitness Center
• Lecture spaces
• Flexibility at classroom and facility wide level
• Exterior instruction spaces
• Individual space to work
A. Double-loaded corridor
B. Pods
C. Multi-modal instructional space
HABITS & HABITATS
MODELING ADJACENCIES

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BENEFITS TO BUILD UPON & CHALLENGES TO MITIGATE

- Ability to expand for future construction
- Collaboration
- Common areas
- Community building
- Cost efficient
- Display student work
- Ease of navigation
- Flexible
- Instructional transparency
- Mimics professional work environment

- Minimize distractions
- Natural daylighting
- Organized
- Short transition times
- Staff development
- Student centered
- Supports personalized learning
- Visual & auditory privacy
- Visual supervision
REVIEW-compilation-of-space

Defining Space Requirements

Core Academics
- Core Classroom: Health, Math, English, Social Studies, Foreign Language, ELL, Reading
- Biology Lab
- Chemistry Lab
- General Science Classroom
- Science Prep / Storage
- Small group learning
- Flexible Learning Area / Common Gathering Space
- Storage (distributed)

Special Education
- Small Group Meeting Room
- Special Education Office
- Self contained classroom
- Resource classroom
- Storage (distributed)

Physical Education & Athletics
- Main Gymnasium & Bleachers
- Auxiliary Gymnasium & Bleachers
- Fitness / Cardio Center / Weight Room
- Office / Bathroom: Teachers, Coaches
- Storage: Interior, Exterior, Physical Education & Athletics
- Locker Room
- Athletic Director Office
- Training Room
- Laundry Room

Electronic Compilation of Space
HABITS & HABITATS
DEFINING SPACE REQUIREMENTS
Define Spaces

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose: WHY?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furniture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Considerations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Considerations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential Shared Spaces – Cross Curricular Space

<table>
<thead>
<tr>
<th>Cross Curricular Spaces</th>
<th>Yes / No</th>
<th>Shared / Not Shared</th>
<th>Centralized / DeCentralized</th>
<th>Share With...?</th>
<th>Do NOT Share With...?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Rooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Learning Areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laundry Facilities w Commercial Washer & Dryer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading Dock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locker / Dressing / Changing Rooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Access</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Restrooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff Offices / Collaboration / Dining - for tech & core content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PLANNING LAB #1
MARCH 16 & 17

SUMMARY
KEY FACILITY COMPONENTS

- **STEM FOCUS:**
 - Engineering & Manufacturing
 - Healthcare Science
 - Information Technology

- Business Partnerships
- College AND Career Ready
- Curriculum delivery is Problem Based Learning / Interdisciplinary Instruction
MULTIPLE USE SPACES

- Central space
- Combines functions of library, cafeteria, extended learning area
- Called the “Student Center” or “Touchdown” space
- Multiple lecture halls that allow for approx. 75 students at once
FLEXIBLE SPACES

- Individual / quiet work
- Small group work with visual supervision
- Breakout areas
- Mobile walls for flexible classrooms
TEACHERS, STAFFING & PROFESSIONAL DEVELOPMENT

- Teachers will share planning areas / collaboration offices
- Staffing this facility correctly is crucial for its success
- Professional development will be necessary
SPACES FOR FUTURE EXPANSION

- Gymnasium
- Band, Orchestra, Choir
- Facility should be located on the site to allow for future construction of these spaces
SMALL GROUP DISCUSSIONS
Small Group Discussion

Topic #1:

In your opinion, define what would be a Successful Fulton County STEM High School.
SMALL GROUP DISCUSSION

TOPIC #2:

☐ What modifications to the proposed plan might you suggest?

☐ What other academic or facility factors should be considered as the plan nears completion?
QUESTIONS & ANSWERS

NEXT STEPS